Das Pfahlbauproblem

Aus atterpedia
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Beim über ein Jahrhundert lang diskutierten „Pfahlbauproblem“ – ob die Pfahlbauten über dem Wasser auf Pfählen oder auf dem trockenen Land errichtet wurden – zeigt sich überraschenderweise die Problemstellung genau gegenteilig. Falls die Pfahlbauten über dem Wasser errichtet gewesen wären, hätte die Wirkung der Wellen alle Hinterlassenschaften innert kurzer Zeit in Richtung See abgezogen.
Demgegenüber mussten die auf dem Trockenen errichteten Pfahlbauten nach ihrer Auflassung innerhalb recht kurzer Zeit dauerhaft unter Wasser gekommen sein, da ihre Hinterlassenschaften ansonsten nicht auf uns gekommen wären.

Inhaltsverzeichnis

Eine kurze Wellenkunde (mit Wirkungen auf Pfahlbau-Überreste)

Aus den nachfolgenden Darstellungen findet man als überraschendes Ergebnis, dass das wirkliche Pfahlbau-Problem in der raschen Überdeckung der Überreste mit tiefem Wasser besteht:

Lahnungsreste: Holzpfosten u. Weideruten zum Schutz von Sutz-Lattrigen, Rütte, am Bielersee nach 5 Jahren
völlig fehlende Überreste unter "Pfahlbau"-Badesteg; am Grund gibt es sogar nur mehr sehr große Steine:
als Vergleichsmaßstab dienen Schlapfen auf dem Steg
  • Bei Pfahlbaustationen am trockenem Strand müssen alle Überreste in kurzer Zeit in tiefes Wasser (zumindest 3–4 m) gekommen sein, da wegen der Wellen-Erosion bei langsamem Wasseranstieg (Jahre) keine Überreste gefunden werden könnten. Das gilt insbesondere für leichte, gerade untergehende Gegenstände aus organischem Material, die schon bei leichtem Wellengang in geringer Wassertiefe abgeschwemmt würden.
  • Diese Gegebenheiten sind auch relevanten Pfahlbauforschern deutlich bewusst, wenn Albert Hafner und Peter Suter 2004 schreiben: „Die prähistorischen Siedlungsreste am Bielersee sind durch die stetige Erosion der Flachwasserzone massiv bedroht. Deshalb findet im Bereich der Gemeinde Sutz-Lattrigen seit 1988 ein Grossprojekt zu ihrer Dokumentation und Rettung statt.“
  • Bei im niedrigen Wasser auf Piloten stehenden Pfahlbauten werden durch die Wirkung von normalen und besonders Sturm-Wellen im flachen Wasser unter den Gebäuden alle vergleichsweise leichten Gegenstände, die ins Wasser fallen – auch wenn gerade untergehend – laufend seewärts abtransportiert. Sturmwellen setzen unter solchen Bauten auch spezifisch schwerere Gegenstände in Bewegung und transportieren sie ab.
  • Bei Untiefen mit Siedlungen auf trockenen Grund und langsamem Wasseranstieg (Jahre) würde die erodierende Kraft von Starkwindwellen (4–6 Bft) und Stürmen wohl nichts übrig lassen (Wellenbrecher-Wirkung). Die Überreste auf Untiefen müssen in kurzer Zeit in tiefes Wasser gelangt sein. Winterstürme sind recht häufig (vgl. Kap. weiter unten), und wenn sie parallel zur Längs-Ausrichtung des Sees laufen, produzieren sie sehr lange und sehr hohe Wellen. Die grundnahe Wasserteilchen-Geschwindigkeit nimmt proportional zur Wellenhöhe zu und zieht – sogar quadratisch mit der Wellenhöhe ansteigend – immer größere und schwerere Gegenstände seewärts ab.
  • Falls beim Verlassen eines Pfahlbausees der Seeabfluss – aus welchen Beweggründen auch immer – bewusst durch Verlegung des Abflusses bis auf eine bestimmte Höhe unterbunden wurde, dauerte ein Aufstau um z.B. 4–5 Meter am Zürichsee rund 50 Tage, am Bodensee 125 Tage, am Mondsee 90 Tage und am Attersee 150 Tage; wahrscheinlich aber etwas länger, falls der Abzug der Siedler erst im Herbst nach der Ernte erfolgte.
  • Bei Kliffen – durch Brandungswellen entstanden – könnten unter dem seewärts abtransportierten Abraum-Material Überreste bisher nicht entdeckter Pfahlbaustationen „verschüttet“ und damit besonders geschützt sein, die mit Sondier-Bohrungen einfach auffindbar wären.

Verwendete Literatur

  • Coastal Engineering Research Center (CERC 1984):Shore Protection Manual, Volume I. Department of the US Army 1984. Distribution Unlimited. DIE STANDARD-Wellentheorie: Chapter 2: S. 2-1 bis 2-30: Lineare Wellentheorie (mit Formeln und vielen Rechenbeispielen): Wellengeschwindigkeit, -länge und -periode; Sinuswellen; Fluidgeschwindigkeit und -beschleunigung; Wellenenergie und -kraft.
Graph zur Ermittlung der maximalen Wassertiefe mit Sandbewegung (Hallermeier)
  • Coastal Engineering Research Center (CERC 1984):Shore Protection Manual, Volume II Department of the US Army 1984. Distribution Unlimited. Strukturen; Strukturplanung: Physikal. Faktoren; techn. Analysen und Fallstudien; Tabellen und Tafeln
  • Hallermeier 1981, Robert: → Critical wave conditions for sand motion initiation. 8 Theorie-Seiten. US Army Corps of Engineers (CERC 1981). Approved for Publication. (Schwell-Geschwindigkeit für Sandbewegungen; kritische Wellenbedingungen; Berücksichtigung anderer physikalischer Faktoren.)
    → S. 10: sinh-Funktionsgraph (vgl. Abb.) zur Ermittlung der maximalen Wassertiefe dmax, in der immer noch Sandbewegung ausgelöst wird.
  • Brown 2005, E. et al.: → Waves, Tides and Shallow-Water Processes. 2nd edition. Butterworth-Heinemann, Oxford, 227 pp; prepared by an Open University Oceanography Course Team. (Ausgezeichnete Darstellung!)
  • Hofmann 2019, Hilmar; Ostendorp, Wolfgang (Hrsg.): → Seeufer: Wellen – Erosion – Schutz – Renaturierung. 155 S., Konstanz 2019. (Kapitel 6: Messung und Modellierung von Wellen, Strömungen und Sedimenttransport in der Flachwasserzone von Seen S. 45-64; Kapitel 10: Archäologische Denkmalpflege in der Uferzone des Bodensees S. 117-126.)

Bewegung der Wasserteilchen in Tiefwasser- und Flachwasser-Wellen

Tiefwasserwellen

Bewegung der Wassertteilchen in einer Tiefwasserwelle

Tiefwasserwellen unterscheiden sich deutlich von Flachwasserwellen. Hier interessieren uns die ersteren vor allem aufgrund Ihres Entstehens, der von ihnen aufgenommenen Windenergie und die Mechanismen ihrer Fortbewegung.

Die Höhe von Wellen hängt ab von der einwirkenden Windkraft und der Länge, über die der Wind auf die Wellen einwirken konnte ("Fetch").

Wie der nebenstehenden Grafik zu entnehmen ist, bewegen sich die einzelnen Wasserteilchen kreisförmig und absolut nur recht langsam in Richtung der Wellenbewegung.

Mit der hier verlinkten → GIF-Animation von Tiefwasser-Wellen wird die Bewegung der Wasserteilchen über drei Wellenperioden veranschaulicht:

  • beginnend mit einem Teilchen am Wellenberg und
  • beginnend mit einem Teilchen knapp nach dem Wellental;
  • wie der Grafik zu entnehmen ist, bleiben die einzelnen Wasserteilchen etwa an der gleichen Stelle: weitergegeben wird nur die Bewegung der Welle in Wellenrichtung.

Wie der Abbildung und der Animation ebenfalls zu entnehmen ist, nimmt die (rotierende) Bewegung der Wasserteilchen mit zunehmender Wassertiefe rasch ab.

Geschwindigkeit der Wasserteilchen an einzelnen Stellen der Welle
  • Die Wasserteilchen haben am Wellengipfel die gleiche Geschwindigkeit wie die Wellenfortbewegung.
  • Daraufhin bewegen sie sich nach unten, um ein Wellental zu bilden;
  • dort bewegen sie sich mit der absolut gleichen Geschwindigkeit wie die Wellengeschwindigkeit – aber entgegengesetzt zur Wellenfortbewegung!
    [Anm.: Diese gegenläufige Bewegung der Wasserteilchen im Wellental wird für uns bei Annäherung einer Welle an eine Untiefe (vgl. hier z.B. "Kleiner Hafner" aber auch die sogenannten "Hügeli" am Bodensee) oder in flacheres Wasser von besonderem Interesse.]
  • In der Folge dreht sich die Bewegung der Wasserteilchen nach oben, um erneut einen Wellenberg zu erzeugen.

Übergang von Tiefwasserwellen zu Untiefen-Wellen

Wellenverhalten in der Brecher-Zone von Untiefen
Wellenenergie wird durch Untiefen "verbraucht" (Michael Streßer, Helmholtz-Zentrum Geesthacht)

Wenn sich Tiefwasserwellen einer Untiefe nähern, wird die Wassertiefe rasch geringer. Dadurch verändert sich die Dynamik innerhalb der Welle.

Wenn das Verhältnis von Wassertiefe d zu Wellenlänge L geringer als d/L < 1/2 wird, verändert sich die Wellendynamik in Richtung von Flachwasserwellen.

In der nebenstehenden Grafik sind die wesentlichen Gegebenheiten einer einlaufenden Welle beim Auftreffen auf Untiefen dargestellt.

Bereits bei der ersten Untiefe verändert sich das Zurück-Fließen der Unterströmung im Wellental, da diese Wasserteilchen zu spät aufsteigen, sodass sich erste Brecher bilden.

Bei der nächsten – seichteren – Untiefe verstärkt sich der Effekt, sodass sich vermehrt brechende Wellen ausbilden.

"Beim Brechen der Wellen wird die Energie, die in den Wellen steckt, freigesetzt und es werden starke Strömungen und Turbulenzen erzeugt (Michael Streßer). Dadurch werden Ablagerungen aufgewirbelt und umgelagert."

Falls eine solche Untiefe aus Sand oder Steinen (mit kleinem d50) besteht, werden diese in kurzer Zeit seewärts abtransportiert. Falls eine Wellenbrecher-Funktion dauerhaft bestehen soll, müssen Steine (mit sehr großem d50) verwendet werden.

Inwieweit die sogenannten "Hügeli" am Bodensee mit ihren Wellenbrecher-Wirkungen bei Weststürmen eine Funktion für die weitab im Südosten des Bodensees (z.B. Arbon Bleiche) situierten Pfahlbausiedlungen hatten, ist wohl nur vor Ort erforschbar.

Dass solche Überlegungen zu den "Hügeli" realitätsnahe sind, kann der Dissertation von Rolf Habel, TU Berlin (2001) → „Künstliche Riffe“ zur Wellendämpfung. entnommen werden.


erforderliche Wellenhöhe für eine Partikel-Mobilisierung in ... m Tiefe (vgl. Hallermeier, Robert: Seiten 9 und 10)

Solche Wellenbrecher-Effekte mit ihren "abscherenden Wirkungen" sind bei (u.U. langsam) ansteigenden Seespiegeln wohl auch bei den beiden heutigen Untiefen "Kleiner Hafner" und "Großer Hafner" bei Zürich aufgetreten.

Falls solche Gegebenheiten z.B. beim "Kleinen Hafner" über längere Dauer (entsprechend den Theorien zum Seespiegelanstieg nur in Jahrzehnten eintretenden Klimaänderungen) angehalten hätten, wäre wohl von den Kulturschichten und kulturellen Hinterlassenschaften äußerst wenig oder nichts übrig geblieben.

Dass das nicht eintrat, hängt unter anderem mit der vergleichsweise nur geringen Tiefenwirkung von Wellen zusammen, wie der nebenstehenden Grafik zu entnehmen ist – die für vergleichsweise schwere Partikel mit Rohdichten von 2,2 kg/dm3 gilt. Um in einer bestimmten Wassertiefe solche Partikel zu mobilisieren (und damit seewärts abzutransportieren) sind größere Wellen - in einer Wassertiefe von 4 m Wellenhöhen von über 1 m - erforderlich.

Der Umweltphysiker Hofmann vom Limnologischen Institut der Universität Konstanz spricht in diesem Zusammenhang davon, dass "selbst bei Windwellenhöhen von 1 m, die während eines Starkwindereignisses (4–8 Bft) auftreten können, die Wassertiefe, bis zu der Partikel remobilisiert werden können, nur ~3 m (beträgt)."

Dieser physikalische Zusammenhang ist auch ein wesentliches Argument dafür, dass Pfahlbaureste, die mit Ausnahme von Steinwerkzeugen zumeist ein nur geringes spezifisches Gewicht haben, nicht langsam, sondern sehr rasch in größere Tiefe (zumindest 3 - 4 m) kommen müssen, damit wir überhaupt noch etwas von ihnen vorfinden können.

Flachwasserwellen

Bewegung der Wassertteilchen in einer Flachwasserwelle
Vergleich seegrundnahe Flachwasser- zu Tiefwasserwelle

Tiefwasserwellen haben keine Auswirkungen auf tiefen Seegrund. Bei Annäherung von Tiefwasserwellen an flaches Wasser verändern sich aber die Strömungsverhältnisse deutlich. Falls das Verhältnis von Wassertiefe d zu Wellenlänge L geringer als 1/20 wird, kommt die abbremsende Wirkung auf das im Wellental rückströmende Wassers zur Geltung.

Wiederum wird mit der hier verlinkten GIF-Animation von Flachwasser-Wellen die Bewegung der Wasserteilchen über drei Wellenperioden veranschaulicht:

  • beginnend mit einem Teilchen am Wellenberg und
  • beginnend mit einem Teilchen im Wellental.

Das im Wellental rückströmende Wasser kommt mit dem Seegrund in Reibung, wodurch es abgebremst wird, aber auch Schub auf den Seegrund entgegen der Wellenrichtung ausübt. Damit kommt diese Wassermenge aber für die neue Wellenbildung zu spät, während sich die Teilchen am Wellenberg weiterhin mit gleicher Geschwindigkeit wie die Welle in Wellenrichtung bewegen: dadurch werden die Wellen kürzer und steiler und beginnen in der Folge zu brechen.

Die Wasserteilchen können nun keine kreisförmige Bewegung mehr ausführen, vielmehr wird diese in eine elliptische Bewegung verformt – die am Seegrund sogar noch stärker „eingedellt“ wird.

Die Wellen "ziehen" aufgrund der "rollenden" Bewegung der Wasserteilchen in der Welle – oben in der, unten aber gegen die Wellenbewegung – bei Annäherung an das flache Ufer Material vom Seegrund entgegen der Wellenrichtung in Richtung See.

Wellen-Physik und Formeln im Flachwasser

Welleneigenschaften.png

In der nebenstehenden Grafik sind die wesentlichen Welleneigenschaften einer konkreten Messung (nach Hofmann 2019, Hilmar) dargestellt. Dabei bedeuten:

  • Hmax … maximale Wellenhöhe (zw. Wellenberg und Wellental) in [m]
  • Ts … signifikante Wellenperiodendauer in [s]
  • WL … Wellenlänge zw. zwei Wellenbergen in [m]
  • umax … maximale grundnahe Strömungsgeschwindigkeit (hier in 1 m tiefem Wasser) in [m/s]
  • BSS … Bodenschubspannung in [N/m2]
  • d50 … mobilisierbare Korngröße in [mm]
  • EF … Wellenenergiefluss in [W/m2]

Man erkennt, dass die maximale welleninduzierte grundnahe Strömungsgeschwindigkeit direkt mit der maximalen Wellenhöhe korreliert. Mit der Strömungsgeschwindigkeit ist klarerweise die Bodenschubspannung direkt verbunden. Deren Kraft muss eine bestimmte Höhe erreichen, um Partikel bestimmter Korngrößen mobilisieren zu können.

Bei Starkwindereignissen erreichen Wellen Höhen von 0,5–1,2 (2) m, Periodendauern von 2–2,5 (3) s und Längen von 6–12 (15) m. Damit verbunden sind grundnahe (in 1 m Wassertiefe) Strömungsgeschwindigkeiten von 0,5–1,5 (2) m/s und Bodenschubspannungen von 10–50 (80) N/m2; diese können Partikel von 1–10 (15) mm mobilisieren. Der Wellenenergiefluss erreicht 100–500 (800) W/m2.

Maximale grundnahe Wasserteilchen-Geschwindigkeit im Flachwasser

Grundnahe Teilchengeschwindigkeit.png
Wellendaten Kleiner Hafner mit Hmax = 2 . Hsig lt. "Guide"

Die maximale grundnahe Wasserteilchen-Geschwindigkeit in [m/s] errechnet sich unter Verwendung der nebenstehenden Formel von Brown (2005): → Waves, Tides and Shallow-Water Processes, wobei

  • umax = maximale grundnahe Geschwindigkeit der Wasserteilchen in [m/s]
  • π = Kreiszahl Pi = 3,1415926
  • H = Wellenhöhe (zw. Wellenberg und Wellental) in [m]
  • T = Wellenperiodendauer (Dauer zwischen zwei Wellenbergen) in [s]
  • sinh = sinus hyperbolicus
  • h = Wassertiefe in [m]
  • λ = Wellenlänge zwischen zwei Wellenbergen in [m]

(Der Sinus hyperbolicus im Nenner wirkt sich wie folgt aus: Nimmt man die grundnahe Teilchengeschwindigkeit umax bei einer Tiefe h = 1 m als Basis, so reduziert sich diese bei 2 m auf 1/3, bei 3 m auf 10 %, bei 4 m auf 3 % und bei 5 m auf 1,3 %.)

Notwendige Geschwindigkeit zur Teilchen-Mobilisierung am Flachwassergrund

Mobilisierungsgeschwindigkeit.png

Die notwendige Geschwindigkeit in [m/s] zur Mobilisierung von Teilchen am Flachwassergrund wird unter Verwendung der Formel des US Army Corps of Engineers (1984): → Shore Protection Manual aus den folgenden Parametern bestimmt:

  • umax, res = notwendige Geschwindigkeit der Wasserpartikel für Mobilisierung von Partikeln am Flachwassergrund in [m/s]
  • ρs (ros) = spezifisches Gewicht der Partikel am Flachwassergrund (= 1,0 g/cm3 für gerade untergehendes Holz bis 2,2 g/cm3 für Steine oder Material von abgeräumtem Kliff)
  • ρw (row) = spezifisches Gewicht von Wasser (= 1,0 g/cm3)
  • g = Erdbeschleunigung (= 9,81 m/s2)
  • d50 = mittlere Korngröße [m]

Der Wert des Bruchs der Rohdichten [ρs (Partikel) / ρw (Wasser)] tendiert bei ähnlichem spezifischem Gewicht zum Wert "1", sodass die erforderliche Ablöse-Geschwindigkeit des Wassers für solche Partikel gegen Null tendiert.

Untergehendes Holz, biologisches Material (Getreide, Stoffe, Holz-Werkzeuge usw.) haben anfänglich ein ähnliches Gewicht wie Wasser, sodass sie leicht vom Flachwassergrund abgeschwemmt werden können.

Geröllsteine (z. B. eingebracht über Schwemmkegel von Bächen, aber auch im Zuge von Kliff-Bildungen) haben dagegen eine spezifische Dichte von etwa 2,2 - 2,5 g/cm3. Hallmeier gibt folgende spezifische Gewichte an: Quartz 2,65 g/cm3 und Calcit 2,71 g/cm3.

Weitere → Rohdichten-Werte: Holzkohle: 1,4 g/cm3 (porenfrei, schwimmt nicht) ... 0,45 g/cm3 (porös, schwimmt); Getreidekörner: schwimmen nicht; Sand (Ufer): 1,8...2,6 g/cm3; Erde, nass: 1,6...1,8 g/cm3.

Die Rohdichte ρ der Zellwandstruktur von Holz beträgt 1,5 g/cm³; jene von Wasser 1,0 g/cm³.

Die Rohdichte von trockenem und von → frisch geschlagenem Holz beträgt etwa in g/cm3:

Eiche: 0,65…0,93; frisch geschlagen 0,970; Buche: 0,68…0,88; frisch geschlagen 0,910; Esche: 0,58...0,65; frisch geschlagen; 0,860; Kiefer: 0,49…0,86; frisch geschlagen 0,860; Ahorn: 0,45...0,59; frisch geschlagen 0,790; Tanne: 0,42...0,46; frisch geschlagen 0,750; Erlen: 0,48...0,53; frisch geschlagen 0,710; Fichte: 0,43…0,64; frisch geschlagen 0,680; Pappel: 0,38...0,45; frisch geschlagen 0,560.

Mobilisierbare Korngrößen abhängig von der Wasserteilchen-Geschwindigkeit

Korngrößen.png

Nach Umformung der vorigen Gleichung des US Army Corps of Engineers (1984): "Shore Protection Manual I" findet man eine Formel zur Bestimmung der (mittleren) Korngrößen d50 in [m], die mit einer bestimmten Wasserteilchen-Geschwindigkeit am Flachwassergrund mobilisiert werden können. Die hierbei verwendeten Parameter sind:

  • d50 = mittlere Korngröße in [m]
  • umax = welleninduzierte grundnahe Teilchengeschwindigkeit der Wasserpartikel in [m/s]
  • ρs (ros) = spezifisches Gewicht der Partikel am Flachwasserboden (mit 1,0+ g/cm3 für gerade untergegangenes Holz und bis 2,2 g/cm3 für Steine oder Material von abgeräumtem Kliff)
  • ρw (row) = spezifisches Gewicht des Wassers (= 1,0 g/cm3)
  • g = Erdbeschleunigung = 9,81 [m/s2]

Im Nenner tendiert der Wert des Bruchs der Rohdichten von [ρs (Partikel) / ρw (Wasser)] bei ähnlichem spezifischem Gewicht zum Wert "1", sodass der Wert des Nenners gegen Null geht und sich sehr hohe d50-Werte ergeben. Es ist auch klar, dass Partikel mit einem spezifischen Gewicht ähnlich Wasser – schon wegen des Auftriebs – sehr leicht mobilisierbar sind.

Aus der ersten, obigen Gleichung erkennt man auch, dass die grundnahe Wasserteilchen-Geschwindigkeit proportional mit der Wellenhöhe ansteigt. Die Größe der vom Grund mobilisierbaren Partikel steigt aber mit dem Quadrat der Wasserteilchen-Geschwindigkeit und damit auch mit dem Quadrat der Wellenhöhe.

60-cm-Wellen mobilisieren im Vergleich zu 20-cm-Wellen rund 9mal größere Partikel, 1-m-Wellen 25mal größere Partikel seewärts.

Illustrierendes Wellen-Beispiel bei Friedrichshafen

Starkwindwellen Friedrichshafen (25.4.2019)
Foto: Andreas Ambrosius (→ Artkel im Südkurier)

Wie in der Abbildung der drei Wellen deutlich zu erkennen ist, beginnt die rechte Welle das Verhältnis von Wassertiefe (ca. 2 m) zu Wellenlänge (ca. 8 m) den Grenzwert von d/L < ½ deutlich zu unterschreiten, sodass die Welle zu brechen beginnt. Klar ist zu erkennen, dass die Wasserpartikel am Wellenkamm gegenüber dem rückfließenden Wasser im Wellental überhöht werden und damit die Welle bricht.

Bei der mittleren Welle erkennt man, dass sich das rückfließende Wasser des Wellentals unter den heraneilenden Wellenberg schiebt und damit der Wellenkamm auf der ganzen Breite nach vorne stürzt.

Die linke Welle ergießt ihre verbleibende Bewegungsenergie der Wassermasse des Wellenbergs Richtung Ufer.


Schwan locker gg Sturmwellen (25.4.19) Video von
Andreas Ambrosius (→ Video im Südkurier: 0:40)

Dass das Wasser zwischen den Wellenbergen seewärts strömt, ersieht man im Video des locker gegen die Wellen schwimmenden Schwans (im nebenstehenden Video ab 40 sec.), der sich zwischen den Wellenkämmen wegen der ablandigen Grundströmung im Wellental nur wenig anstrengen muss; nur bei den Wellenkämmen muss er "durchtauchen".

(Anm.: Der gleiche Effekt ist bei Surfern am Meer zu beobachten, die zwischen den Wellenkämmen nur wenig paddeln müssen, um aufs offene Meer zu kommen; schwierig sind immer nur die Wellenberge.)

Kliff-Bildungen – bestens erhaltene Pfahlbauten am Attersee?

überdeckt Kliff-Material viele Pfahlbau-Stationen?
4-m-Kliff des Rosenwinds in Latzl-Bucht, Nußdorf Seegrund bis auf 7-cm-Steine seewärts abgeräumt
2-m-Kliff beim Seitlhof-Strand in Latzlhof-Bucht

Kliffe sind Steilhänge eines Festgesteins oder eines scherfesten Lockergesteins (z.B. Bach-Schüttkegel) an einem Abbruchufer eines Sees oder an einer Abbruchküste eines Meeres.

Typische Reliefformen der Erosion sind Kliffs, also Steilböschungen im Uferbereich, die sich durch Welleneinwirkung in ein standfestes Substrat (z. B. Bach-Schüttungen) gegraben haben.

Ursprünglich waren kleine Kliffkanten mit Höhen von wenigen Dezimetern bis etwa 2 Meter an Seen weit verbreitet, wurden aber durch Vorschüttungen und Ufermauern abgedeckt oder im Zuge von Erosionssicherungsmaßnahmen (‚Seehang-Sanierung‘) durch Geröll- und Steinschüttungen gesichert.

Wesentliche Prozesse sind

  • die Brandung, die zu einer Brandungshohlkehle führt,
  • Scherkräfte innerhalb des Lockergesteins, die zu einem Abrutschen von Hangmassen führen, und
  • Wellen, die zu einem Abtransport des abgerutschen Lockergesteins Richtung See führen.

Am Attersee finden sich solche Kliff-Ufer, die vor allem dem sommerlichen nord-östlichen Rosenwind mit recht kontinuierlicher Windstärke von etwa 4 Bft (ca. 30 kmh) und einer Wind-Anlauflänge von rund 10 km ausgesetzt sind.

Seltene, aber besonders extreme Wellen bis zu 2 m produzieren Südstürme bis Orkanstärke (11 Bft).

2 - 5 m hohes Kliff-Ufer in Nußdorf a.A.12.000 m²

Die z.B. in Nußdorf am Attersee vorzufindenden Ufer-Kliffe haben Höhen zwischen 2–5 m über dem Wasserspiegel.

Das Material, das ursprünglich von der historischen Kegelschüttung des Nässltalbachs stammt, wurde durch die Brandungswellen abgeräumt und seewärts abtransportiert.

Ähnliche Kliff-Verhältnisse gibt es bei den Pfahlbaustationen bei Abtsdorf und deutlicher bei Aufham.

Der Doyen der österreichischen Pfahlbauforschung Johann Offenberger vermutete bereits im dritten Jahr (1971) seiner Unterwasser-Forschungen eine Station in der sogenannten „Latzl“-Bucht in Nußdorf.

Diese Stelle wäre für eine Pfahlbaustation recht günstig gelegen und hätte über eine Fläche von 1,2 ha verfügt (vgl. die nebenstehende Abbildung).

14C-Datum VRI-300 1971: Latzlbucht Nußdorf a.A.

Obwohl Offenberger nicht selbst über Pfahlbau-Fehlsuchen in den offiziellen „Fundberichten aus Österreich“ berichtet, gibt es doch einen indirekten Nachweis dafür, dass er dort eine Pfahlbaustation annahm: vgl. hierzu die beigefügte Radiokarbondatierung eines Pfahles durch das Vienna Radium Institute (VRI) mit der niedrigen Nummer 300. (VRI-Kommentar: "Das Datum widerspricht der Annahme eines neolithischen Pfahlbaus.") Diese VRI-Zeitbestimmung war erst die zweite vom Attersee – nach jener der Pfahlbaustation Misling.

Unter Berücksichtigung der Menge des durch Brandungswellen abgeräumten und seewärts transportierten Materials konnte Offenberger ehemals in der Latzl-Bucht keinen möglichen Pfahlbau entdecken, da ein solcher rezent unter einer meterdicken Geröllschicht gelegen wäre.

Es wäre heute am Attersee und auch an anderen Seen mit vergleichbaren Ufer-Kliffen einfach möglich, durch Sondierungs-Bohrungen festzustellen, ob unter solchen Geröllschichten Spuren von Kulturschichten zu finden sind.

Das wäre umso interessanter, da durch solche Überdeckungen bestens erhaltene bisher unentdeckte Stationen gefunden werden könnten.

Anm.: Heutige Sicherungsmaßnahmen für erosionsgefährdete Stationen werden mittels Steinschüttungen in äquivalenter Weise bewerkstelligt (vgl. gleich den folgenden Abschnitt).

Gefährdung von Pfahlbauten durch Wellen und Niedrigwasserstände

Gefährdung von Stationen durch Wellenerosion

schraffiert: Juragewässerkorrektion, schwarz: "harte" Uferbefestigungen

Im Folgenden werden relevante Veröffentlichungen zur Gefährdung von Pfahlbaustationen durch Erosionsvorgänge gebracht.

Ramseyer, D. et al. (Eds.): → Archéologie et erosion Bd 1; 1996. 118 S.

  • Iseli, Christoph: Erhaltung und Wiederherstellung des natürlichen Ufers des Bielersees: Was ist zu tun? [Anm.: Durch die Juragewässer-Korrektionen wurde der Seespiegel des Bielersees abgesenkt, sodass dadurch die Pfahlbaustationen nunmehr in seichterem Wasser liegen. (siehe nebenstehende Abbildung)]
  • Courboud, Pierre: Natürliche Erosion und das Verschwinden von prähistorischen Unterwasserstätten am Genfersee

Archéologie et Érosion 2: → Gefährdete Feuchtgebiete. 2006; 133 Seiten.

  • Hafner, Albert: Schutzmaßnahmen zur Erhaltung der archäologischen Stätten am Bielersee
  • Brem, Hansjörg: Diktiert die Wirtschaft die Zerstörung oder die Erhaltung von Seenstationen? Die "in situ"-Erhaltung im Kanton Thurgau
  • Eberschweiler, Beat: Zerstörung der Pfahlbauten in den Zürcher Seen: Verschiedene Ursachen, angemessene Antworten
  • Köninger, Joachim et Schlichtherle, Helmut: Erosionsschutzmaßnahmen an Seeuferstationen im deutschen Teil des Bodenseeufers. Aktueller Stand der Erfahrungen und neue Projekte
Ufererosion im Flachwasserbereich. D = L/2 →
Niveau der Wellenwirkung, mit L = Wellenlänge

Archéologie et Erosion 3 → Monitoring und Maßnahmen. 2015, 210 Seiten.

  • Pohl, Henrik: Erste Ergebnisse und Massnahmen zum Schutz der prähistorischen Seeufersiedlungen in Österreich. S. 71–78.
  • Marianne Ramstein und Jürgen Fischer: Erosionsschutz in Sutz-Lattrigen (Bern). Forschungsstand, Erfahrungen und Perspektiven. S. 93–100.

Entsprechend dem Wellen-ATLAS der Schweizerischen Eidgenossenschaft (Quelle: https://swisslakes.net/) können die daraus gewonnenen und nachfolgend angegebenen Werte der Wellenhöhen - wobei Hmax mit 2 . Hsig anzusetzen ist - verwendet werden. Bei einer Wassertiefe von D = L/2 beginnt die Wirkung auf den Seegrund. Daraus erkennt man, dass ob der großen Wellenlängen vor allem an den großen Seen mit langem Fetch viele Unterwasserstationen gefährdet sind. Das gilt insbesondere für den abgesenkten Bielersee.

Gefährdung von Stationen durch Niedrigwasserstände

LU-BW 2011: "Die Flächen der Stationen in Baden-Württemberg liegen heute größtenteils unter Wasser. Während Niedrigwasserzeiten kann jedoch der Wasserstand bis zu Ober- bzw. Untergrenzen dieser Flächen fallen. Erreicht oder unterschreitet der Wasserstand die Obergrenze, führt dies zu sehr geringer Wasserüberdeckung meist verbunden mit starkem Wellengang und damit zu Schädigung bzw. Zerstörung der Siedlungsareale. Erreicht der Niedrigwasserstand die Untergrenzen der Flächen, fallen die Siedlungsareale (Pfahlfelder und Kulturschichten) trocken und können durch Frost und Lufteinwirkung zerstört werden."

Freifallen von Siedlungsarealen aus dem Neolithikum
bei Niedrigwasser am Bodensee/Ober- und Untersee
Höhe der Siedlungsareale
in [m+NN]
Schichten-
Obergrenze
Schichten-
Untergrenze
Unteruhldingen/Stollenwiese 394,50 393,25
Obermaurach/Ziegelhütte 394,25 393,40
Sipplingen/Osthafen 394,30 393,20
Bodmann-Schachen I 394,00 < 393,00
Litzlstetten/Krähenhorn 395,00 393,80
Mammern-Langhorn 393 391
Steckborn „Turgi“ 394 393
Steckborn „Schanz“ 394 391
Ermatingen „Westerfeld/Büge“ 393 390
Arbon Bleiche 3 (nun an Land) 396,00 < 393,90

Quellen: LU-BW: → Bodensee-Wasserstände, 2011, S. 114; Wininer/Hasenfratz : → Ufersiedlungen am Bodensee, 1985; Leuzinger, Urs: → Arbon Bleiche 3 - Befunde. Dissertation 2000, S. 12.

Die Stationen: Kreuzlingen „Seeburg“, Bottighofen „Schlössli-Neuwies“, Landschlacht- Seedorf, Altnau „Ruderborn“, Güttingen, Kesswil „Seedorf“ und Uttwil „Unterbäche“ konnten (obwohl für sie konkrete frühere Pfahlbaufunde vorliegen) von Winiger/Hasenfratz – wohl wegen Erosion – trotz systematischer Bohrungen und Betauchungen nicht mehr aufgefunden werden.

Simulierte Windstärken und -richtungen an Pfahlbauseen

Verwendeter Farb-Code für die Windgeschwindigkeiten

Der Farbcode der von → „Meteoblue - Weather for you“ simulierten Windgeschwindigkeiten der nachfolgenden Diagramme ist der nebenstehenden Legende zu entnehmen.

(Anm.: Klarerweise können heute die ehemaligen Windgeschwindigkeiten und -richtungen zur Zeit der Pfahlbauern nicht rekonstruiert werden. Durch die Wirkung des Golfstroms könnten aber die meteorologischen Verhältnisse in etwa zutreffen. Aussagen der Paläobotaniker über ein vergleichsweise ähnliches Klima (z.B. Lüdi) sind hier hilfreich.)

Windstärken je Monat und See

Die Diagramme der einzelnen Seen zeigen die Anzahl der Tage im Monat, an denen der Wind eine gewisse Geschwindigkeit erreicht. Die höheren Windgeschwindigkeiten (gelb: über 50 kmh; orange: über 61 kmh) treten vor allem in den Wintermonaten Dezember-März auf.

Mit dem Link "→ Daten" gelangt man zum jeweiligen See; durch Hinunter-Scrollen kommt man zu den Grafiken Windgeschwindigkeit (und Windrose), wo detailliertere Daten angegeben sind.

Zugehörige Windrosen samt Windgeschwindigkeiten je See

Die Windrosen für die einzelnen Seen zeigen durch den Abstand vom Zentrum mittels den Kreisen gleicher Zeitdauern, an wie vielen Stunden im Jahr der Wind aus welcher Richtung geweht hat.

Der Farbcode der Windgeschwindigkeiten in den einzelnen Windrichtungen der einzelnen Diagrammen ist der oben angegebenen Legende zu entnehmen.

Häufigkeit von Winterstürmen je Monat

Entsprechend dem → Wintersturmkalender bedeuten Windböen-Maxima von über 130–180 km/h auf dem Feldberg im Südschwarzwald regelmäßig auch stürmische Verhältnisse in der Schweiz und in Oberösterreich.

Solche Sturmtage gab es in den einzelnen Monaten der 67 Jahre zwischen 1955–2022: Oktober 49 Sturmtage; November 82 Sturmtage; Dezember 137 Sturmtage; Jänner 162 Sturmtage; Feber 127 Sturmtage; März 72 Sturmtage.

Im Schnitt ergeben sich damit für die einzelnen Monate: 0,7 Sturmtage je Oktober; 1 ¼ Sturmtage je November; 2 Sturmtage je Dezember; 2,4 Sturmtage je Jänner; 1,9 Sturmtage je Feber und 1,1 Sturmtage je März.

Allein am Bodensee gab es im Zeitraum 2000–2020 jeweils im Winterhalbjahr insgesamt → 21 Föhnstürme mit Windgeschwindigkeiten von 70–120 kmh.

Winterkälte 1962/63 am Bodensee und Attersee

Der Winter 1962/63 war der 3. „Jahrhundertwinter“ nach den Jahren 1929 und 1947; mit Eisschollen auf dem Rhein und 125 Frosttagen. Es war der kälteste Winter der 2. Jahrhunderthälfte. Der Bodensee war in seiner ganzen Fläche zugefroren.==Vorausetzungen für Erhaltung von Pfahlbauresten; mögliche Experimente==



Winiger zu Voraussetzungen für langfristige Erhaltung

  • Winiger 1984, Josef: Nachtrag zum Pfahlbauproblem. In: → Helvetica Archaeologica 1984, S. 83-92.

"Es wurde zwar erkannt, dass am Phänomen der «Pfahlbauten» verschiedenartige Kulturen beteiligt sind, das «Pfahlbauproblem» wurde aber doch als Einheit behandelt. Gleichartigkeit der Bauweise ist nach allgemein ethnologischer Erfahrung am ehesten im Rahmen der Einheit einer Kultur zu erwarten. Die Einheit «Pfahlbauproblem» ist aber nicht aus einer Einheitlichkeit des Siedlungswesens abzuleiten, sondern aus einer Gleichartigkeit der Erhaltungsbedingungen: Die Erhaltung organischer Siedlungsreste ist an die Bedingungen des Überdecktwerdens und des Feuchtbleibens gebunden. Solche Bedingungen setzen langfristige massive Seespiegelschwankungen voraus."


Sturm Sabine beim "Kleinen Hafner" am 10.2.2020
Ramstein, M. & Fischer, J.:zerstörerische Westwind-Wellen laufen auf Fundstelle Sutz-Lattrigen, Rütte auf

Zitat: "In der Pfahlbauvorstellung ist eine Erklärung der guten Erhaltung organischen Materials mitenthalten in der Annahme, die Abfälle und Ruinen der Dörfer seien direkt ins Wasser gefallen und im Seegrund allmählich einsedimentiert worden, was ihre Konservierung über Jahrtausende ermöglichte. Daran ist sicher richtig, dass die Einlagerung der Siedlungsreste in ständig feucht bleibendem Seegrund ihre Zersetzung verhinderte. Unzutreffend scheint mir hingegen die Vorstellung, dass ins Wasser fallende organische Materialien dort kompakte torfige Schichten mit Aschen- und Mistlagen usw. bilden könnten, wie sie tatsächlich vorgefunden werden. Damit würde die Rolle der Wellenerosion unterschätzt, die bei regelmässig auftretenden Stürmen die Oberflächen der Strandplatten aufwühlt und die Bildung kompakt-organischer Schichten verhindert. Deshalb müssen für die Erhaltung von Kulturschichten und Objekten aus organischem Material an Seeufern mindestens drei Bedingungen erfüllt sein:

1. Siedlungsabfälle und -ruinen müssen dauernd feucht geblieben sein, damit sie nicht zersetzt werden konnten.
2. Sie müssen zudem überdeckt worden sein, damit sie durch die ständigen Wellenbewegungen nicht aufgewirbelt und fortgespült wurden.
3. Sie dürfen auch in späterer Zeit nie in eine Höhenlage geraten sein, in welcher längerdauernde Erosion zu ihrer Abtragung führen konnte.

Die Pfahlbautheorie erklärt nun nicht, wie es zu einer Überdeckung von Kulturschichten kommen konnte, welche zwar häufige und deutliche Erosionsspuren aufweisen, ebenso häufig aber auch kompakte organische Lagen enthalten, die unter Wasser kaum entstanden sein können. Es wären bestenfalls Mischungen von organischen mit limnischen Sedimenten zu erwarten, die ebenfalls auftreten können und dann als Folge von Erosion und Umlagerung zu deuten sind."

Die Autoren entwerfen folgendes Bild:

"Ginge man von der Annahme begehbaren Siedlungsgrundes aus - also von Dörfern, die nicht im Wasser standen-, so erklärten sich jene Eigenschaften der Kulturschichten, die auf Bildung am Trockenen hinwiesen. Dann aber mussten die Seen zur der Zeit, als diese Dörfer standen, viel kleiner gewesen sein als heute und sich später wieder ausgedehnt haben, so dass die unterdessen gebildeten Siedlungsruinen wieder überschwemmt wurden. Bei dauerhaften Seehochständen konnten die Ruinenschichten dann durch Seekreide überdeckt und in diese eingelagert werden. Damit erklären sich sowohl die Merkmale der Bildung am Trockenen, als auch die allgegenwärtigen Erosionserscheinungen und auch eventuelle Umlagerungsschichten. Ging der See wieder stark zurück, so konnte ein neuer Zyklus Siedlung-Überschwemmung-Einlagerung beginnen."

Zusammenfassend schreiben sie: "ist festzuhalten, dass es massive und längerdauernde Seespiegelschwankungen … gegeben haben muss." (Ohne einen Nachweis fügen sie (leider) erläuternd hinzu: "… als Folge übergreifender klimatischer Faktoren …".)

Einfach mögliche Grundlagenforschung zum Pfahlbauproblem

Auch heute noch gibt es "richtige Pfahlbauten", insbesondere in Südostasien, auf den Nikobaren, in Westafrika, auf der chilenischen Insel Chiloé und in Neuguinea. In Südamerika werden im Wasser stehende Pfahlbauten allgemein als Palafitos bezeichnet. Vgl. hierzu:

Es bietet sich an, bei im Wasser von Seen auf Piloten stehenden bewohnten Pfahlbauten zu eruieren, inwieweit deren ins Wasser gefallene Abfälle (z. B. Hölzer, Äpfel, Getreidekörner, Textilien, Netze, Tierkot usw.) Kulturschichten ergeben, die jenen der neolithischen Pfahlbauten ähneln.

Es würden sich in räumlicher Nähe anbieten: der Pfahlbau-Nachbau Kammerl am Attersee (12 Jahre in Betrieb; dann 2022 verbrannt: was ist davon – nach 100 Jahren im Flachwasser – noch zu finden?), aber auch die Station Unteruhldingen. Pfahlbauten in heimischen Seen sind auch die vielen Bootshütten – bei denen aber vergleichsweise wenig „natürlicher Abfall“ ins Wasser fällt – dieser wäre eben künstlich einzubringen.

Die Technik der Seespiegel-Absenkung mittels Rückwärtserosion

Die Wirkungsweise der Rückwärtserosion

Demonstration der Rückwärtserosionskraft von Wasser
Bild: Stadt Erftstadt / Feuerwehr / Autor: Daniel Schlich

Die nebenstehende Luftaufnahme der schrecklichen Hochwasserkatastrophe in der deutschen Stadt Erftstadt (Blessem) nach der Nacht zum 16. Juli 2021 zeigt die enorme "rückwärts erodierende" Kraft des Wassers.

Nach längerer vergeblicher Suche nach einem Bild zur Rückwärtserosion verblieb als eines der wenigen eindrücklichen Bilder das hier gebrachte Luftbild, sodass es hier trotz der leider so bedauerlichen Flutkatastrophe gebracht wird.

Wie deutlich (2 mal Klicken) zu erkennen ist, „fressen“ sich die Erosionstrichter entgegen der Richtung des zufließenden Wassers immer mehr entgegen der Strömungsrichtung ("rückwärts") in das schotterige Material.

Das Entstehen und die Form der Erosionstrichter werden durch die Strömungsgeschwindigkeit des abströmenden Wassers bestimmt. Da das überflutende Wasser völlig eben anströmt, ergeben sich die hier klar erkennbaren halbkreisförmigen Abflusstrichter.

Da die Überflutung völlig eben ist, beginnt die Rückwärtserosion auch an mehreren Stellen gleichzeitig, wie die Abbildung zeigt. Falls bei den anderen Trichtern die Abflusskante höher gewesen wäre, hätte sich nur an der Stelle des tiefsten Abflusses ein Abflusstrichter gebildet.

Es ist gedanklich gut vorstellbar, dass sich die Rückwärtserosion anders ausbreiten würde, wenn man z.B. mittels Stangen o.ä. bei einem bestimmten Abflusstrichter entgegen der Fließrichtung eine Eintiefung herstellen würde. Damit wäre weiteres Wasser aus der Fläche in die Richtung dieser Eintiefung geflossen, wodurch sich die Erosionswirkung weiter erhöht hätte.

Falls man dieses Vorgehen flussaufwärts fortsetzte, ergäbe sich ein erster, kleiner Abflusskanal. Falls nun dieser Abflusskanal tiefer wird, fließt immer mehr Wasser nun durch diesen, womit sich eine höhere Abflussgeschwindigkeit ergibt, da ja das Wasser nun in einem geringeren Querschnitt als zuvor fließen muss. Die höhere Fließgeschwindigkeit erhöht die „Abreißkraft“ auf den Untergrund und erhöht die Transportkraft. Damit tieft sich dieser "Kanal" immer mehr ein.

Die (Er-)Findung der Rückwärtserosion (wahrscheinlich) in Zürich

Die Sihl war ehedem ein wildbachartiger Fluss, der parallel zum Zürichsee im Sihltal fließt. Die Sihl schüttete historisch ihre Schotterfracht anfänglich mäandernd über das jetzige Stadtgebiet von Zürich und baute den flachen Untergrund der Stadt auf. Nachdem dieser Abfluss durch die zunehmende Aufschotterung des Gebietes von Zürich nicht mehr möglich war, verlegte sich der Abfluss der Sihl weiter nach Nordosten und letztlich zur Gänze in die Limmat, wo sie nach 1,8 Fluss-Kilometern in die Limmat einmündet.

Die Sihl hat bei einem Einzugsgebiet von 344 km² eine mittlere Wasserführung MQ von nur 7 m³/s; demgegenüber hat die Limmat mit einem Einzugsgebiet von 2412 km² eine mittlere Wasserführung von 101 m³/s. Bei Hochwasser kann die Sihl aber auf das 40fache (!) mit einer Wasserführung von HHQ = 280 m³/s (2005) anschwellen, was dem Dreifachen des mittleren Limmatabflusses entspricht. Die höchste historisch jemals beobachtete Hochwasserführung der Sihl mit HHQ = 500 m³/s wird im Bericht zur Volksabstimmung über die Korrektion der Limmat vom 14.9.1941 angeführt.

OFFEN: Walther 1927 Schotterfracht der Sihl

Zürich-Überschwemmmung vor / nach Entlastungsstollen
Bild: Amt für Abfall, Wasser, Energie und Luft des Kantons Zürich

Durch ihre Schotterfracht konnte die Sihl vor allem bei Starkregenereignissen den freien Abfluss der Limmat innert kurzer Zeit so verlegen, dass es zu deren Aufstau und in der Folge zu einem Seespiegelanstieg des Zürichsees kommen konnte.

Bei extremen Unwettern kann die sonst gemächlich dahinfließende Sihl zum reißenden Fluss werden und im unteren Sihltal und der Stadt Zürich bis heute massive Überschwemmungen anrichten. Deswegen wird aktuell bei Thalwil ein Entlastungsstollen von der Sihl direkt in den Zürichsee errichtet, der künftig eine Hochwassergefährdung von Zürich hintanhält.

Die nebenstehende Grafik des Bild des → Amtes für Abfall, Wasser, Energie und Luft des Kantons Zürich zeigt zweierlei:

  • in der heutigen Situation (links) werden bei einer extremen Wasserführung der Sihl (600 m³/s) weite Teile der Stadt Zürich überschwemmt. Die Limmat ist heute bei der Einmündung der Sihl so tief gelegt, dass es zu keinem Rückstau der Limmat in den Zürichsee kommt.
  • Durch die künftige Situation (rechts) mit der Errichtung eines Entlastungsstollens bei Thalwil wird das extreme Hochwasser der Sihl entlastet, sodass die Sihl bei Zürich nicht über 250–300 m³/s führt und damit auch nicht mehr über ihre Ufer tritt. Der Entlastungsstollen schützt vor einer Sihl-Extremhochwasserspitze von bis zu 600 m³/s, was statistisch einmal in 500 Jahren vorkommt.

Nach heutigen Erkenntnissen wird Hochwasser der Sihl von über 300 m³/s etwa alle 20 Jahre durch den Entlastungsstollen strömen.


Die Technik zur Absenkung eines Sees für die Gewinnung baumloser Strandflächen wurde höchstwahrscheinlich in Zürich entdeckt. Wenn bei Starkregen die Sihl große Schotterfrachten lieferte, konnte die Limmat verlegt werden und damit stieg der Seespiegel des Zürichsees rasch an. Gegen diesen Anstieg haben sich die am See lebenden Leute durch Abgraben des den Abfluss verlegenden Schotters mittels „Rückwärtserosion“ gewehrt, sodass der Seespiegel wieder auf seine ursprüngliche Höhe abgesunken ist.

Wenn die Seebewohner ihre Rückwärtserosions-Technik in größerer Entfernung vom See begannen, so senkte sich die Seespiegelhöhe unter das gewöhnliche Niveau und es fielen viele Strandflächen trocken, die dann besiedelt werden konnten.

Szenario-Bild: Abgraben eines See-Abflusses mittels Rückwärts-Erosion

Mit dem hier entworfenen Szenario zum „Abgraben eines See-Abflusses mittels Rückwärts-Erosion“ soll eine Vorstellung von der Technik und den Arbeiten gegeben werden [Anm.: ... und zum Namen des Attersees.]

Wie kann man sich das vorstellen?

Die Arbeiten beginnen an der entferntesten Stelle des Abflusses, die die erwünschte See-Absenkung ermöglicht.

Die Flusssohle wird durch händisches Abgraben an der Stelle mit der größten Strömung begonnen; dadurch erhöht sich die Strömungsgeschwindigkeit und das Material wird flussabwärts abgeschwemmt und der gewünschte Kanal beginnt zu entstehen.

[Bei größeren Flüssen wird man wohl eine Arbeitsplattform aus zwei kleinen Einbäumen in der Flussmitte verwendet haben, die mit Seilen an Bäumen auf beiden Seiten des Flussufers befestigt waren.]

Durch die erhöhte Fließgeschwindigkeit wegen des höheren Gefälles gibt es am Übergang von Fluss zum Kanal eine erhöhte Erosion, die sich seewärts fortsetzt.

Die Richtung dieser Rückwärtserosion wird durch Lockern des Flussbettes mittels Stangen o.ä. von der Seite beeinflusst und dadurch die Erosionskraft und -geschwindigkeit erhöht.

Je größer die Höhendifferenz zwischen altem Fluss und dem neuen Kanal wird, umso "lauter" wird das in den Kanal hineinstürzende Wasser.


Der entscheidende Moment ist erreicht, wenn der Kanal den See erreicht und damit die Abflussschwelle durchbrochen wird: dann erhöht sich plötzlich die Abflussmenge des Sees auf ein Vielfaches des normalen Abflusses und der Kanal wird in seiner ganzen Länge ausgeräumt, „erodiert“: – vgl. die indogermanische Wortdeutung zum „Attersee“ („sich durch das Gestein fressend“; „dröhnender Sturzbach“).

Da der See plötzlich seine frühere Abflussschwelle verliert und das Seewasser nach dem „Durchstich“ der Abflussschwelle und dem anstehenden Kanal plötzlich eine „Schiefe“ von etwa 2 ‰ bekommt (das entspricht einem Mittelgebirgsfluss!), erhöht sich die Strömungsgeschwindigkeit exorbitant. Beispielhaft sei angeführt, dass die Donau bei einem Gefälle von 0,5 ‰ eine Strömungsgeschwindigkeit von ~ 12 kmh hat.

Der wegen dieses „Durchstichs“ enorm erhöhte Abfluss (vl. 500 m³/s?) bewirkt – nach grober Abschätzung – eine Absenkung eines Sees von der Größe des Attersees innerhalb von etwa 1 Woche um rd. 4 m.

Die Geräusche des „stürzenden“ Wassers beim Graben des Kanals und vor allem beim finalen Durchstich zum See haben dem Attersee wohl zu seinem (alt-europäischen) Namen verholfen.

Geologie: Endmoränen, -material und Seeabfluss (großteils, ToDo)

Abfluss des Attersees - Längenschnitt des Traungebiets 1904

Wie der nebenstehenden Abbildung aus 1904 (K.k. Hydrographischer Dienst in Österreich: Das Traungebiet) vor jeglicher Abflussbeeinflussung und -regulierung des Attersees zu entnehmen ist, hatte dessen Seeausrinn auf den ersten Kilometern der Ager ein recht starkes Gefälle, das weit über dem Durchschnitt der Ager mit rund 3,6 Promille lag.

Diese Gegebenheit ist auf das Vorhandensein der Endmoräne bei Schörfling/Seewalchen zurückzuführen, auf deren see-abgewandten Seite eben dieses höhere Gefälle auftrat. Dies führte früh zur Anlage von Mühlen, die bereits im Mittelalter errichtet wurden, und heute noch mit der Ortschaft "Siebenmühlen" daran erinnern.

Demgegenüber gibt es beim Ausrinn des Gmundner Sees keine Überhöhung der Endmoräne mehr, die vermutlich durch die immer wieder auftretenden extremen Hochwässer eingeebnet wurde.

Damit gab es am Gmundner See auch keine einfachen Möglichkeiten einer Seeabsenkung mittels Rückwärts-Erosion durch neolithische Kanal-Pfahlbauern.

Dass es in späterer Zeit dennoch zwei Mal zu Seespiegel-Absenkungen gekommen ist, zeigen aktuelle Forschungen bei Traunkirchen.

Salcher 2010, B. et al.: → High-resolution mapping of glacial landforms in the North Alpine Foreland, Austria. (vgl. v.a. Abb. 7, S. 288 zum Seeabfluss durch Endmoränen: "verändert nach Schreiner": Hegau und westlicher Bodensee. = Sammlung Geologischer Führer - besorgt am 22.4.22. Neuere Literatur: → Bernhard Salcher, University of Salzburg, Department of Geography and Geology, PhD

Salcher 2018, Bernhard; Starnberger, Reinhard; Götz, Joachim: → Sediment‐landform associations of major glaciations in the North Alpine Foreland. Abb. 6 XXI International Congress of the Carpathian Balkan Geological Association (CBGA 2018); Berichte der Geologischen Bundesanstalt, v. 126, p. 289 – 304.

Ellwanger 2011, D. et al.: → Quaternary of the southwest German Alpine Foreland (Bodensee-Oberschwaben, Baden-Württemberg, Southwest Germany), Quaternary Science Journal 2011, Vol. 60, Nr. 2-3, p. 306-328. - es sind v.a. die Moränenbildungen unterschiedlicher Eiszeiten zw. Ober-/Untersee und beim Abfluss des Bodensees von Interesse.

Huber (Zürichsee, Sihl, Limmat)

Schindler 1971, Conrad: → Geologie von Zürich und ihre Beziehungen zu Seespiegelschwankungen: S. 297: Schindler wischt Hinweise auf Seekreidefunde und "Moräne" (Seekreideablagerungen?) in größerer Tiefe (19-20 m) mit den „Sünden eines längst verstorbenen Bohrmeisters“ vom Tisch.

Janik 1969, V.: → Die Pfahlbausiedlung See/Mondsee im Blickfeld landschaftlicher Forschung. Jahrbuch des OÖ Musealvereins, Linz, 1969; S. 181 - 200.

Suter 2017, Peter et al.: → Um 2700 v. Chr. – Wandel und Kontinuität in den Ufersiedlungen am Bielersee: S. 145, ad "Nidau": Die erhaltenen Kulturschichten liegen in 4 bis 6 m Tiefe unter dem heutigen Gehniveau unterhalb von Ablagerungen der Moderne sowie Seekreide-, Lehm-/Silt- und Torfschichten ... Im südlichen Siedlungsareal – landseitig der spätbronzezeitlichen Station Nidau, Neue Station – finden sich erneut Schlagdaten des 39. Jahrhunderts v. Chr.; ihre 14C-Daten fallen in den Zeitraum 3950 bis 3800 v. Chr.

Lukas 2016, S., Rother, H.: → Moränen versus Till: Empfehlungen für die Beschreibung, Interpretation und Klassifikation glazialer Landformen und Sedimente. (zur Zusammensetzung von Moränenmaterial)

Rother (o. Datum), H. u. Wansa, S.: → Gletscherablagerungen und glazigene Vollformen (Lockergesteine). Geologische Kartierungsanleitung in der Geowissenschaftlichen Sammlungen im Bereich der Staatlichen Geologischen Dienste Deutschlands.

Gletscherrandseen; Seehöhe, Fläche, Einzugsgebiet, Abflussgefälle, Siedlungsalter

Der Alpenraum zum Höhepunkt der letzten Eiszeit; © Geologische Bundesanstalt; Idee van Husen (2013)

Zitat: © Geologische Bundesanstalt (Hrsg.): → Der Alpenraum zum Höhepunkt der letzen Eiszeit.. Geologische Bundesanstalt: → Quartär/Rocky Austria: Seitenende: "Grafiken stehen für Forschung und Lehre zur Verfügung" mit dortigem → Download-Link.

Prähistorische Pfahlbauten um die Alpen: Wikipedia, Daten zu den Stationen ...; → Liste der größten Seen in der Schweiz

  • Zürichsee 406 m, 90,1 km2; 1800 km2; Limmat MQ 101 m³/s; "Sihl" kann Limmat verlegen; Limmat 5 m auf 1 km nach Sihl-Treffen: > 5 ‰ Gefälle; 4250 v.Chr.;
  • Egolzwil 597 m (bei Wauwil ~3-km2-See; heute 6 m tiefe "Wanne" durch "Ron" rundherum trockengelegt) ; 4280 v.Chr.
  • Bodensee 395 m, 536 km2; 11.487 km2; Rhein MQ 251 m³/s; Stein am Rhein/Diessenhofen: 10 km - 16 m: 1,6 ‰ Gefälle; bei Stein mehr; 4000 v.Chr.
  • Zugersee 413 m, 38,3 km², 212 km² Einzugsgebiet, MQ = 6 m³/s; auf 2,2 km – 6 m = 3 ‰ Gefälle
  • Genfersee 372 m, 581 km2; 7.975 km2; Fluss "Arve" kann Rhone verlegen; 1 km 3 m: 3 ‰ Gefälle; 4000 v.Chr.
  • Sempachersee 504 m, 14,5 km2; 4000 v.Chr.
  • wegen Juragewässerkorrektionen nur Abschätzungen der Abflussgefälle:
    • Bielersee 429 m, 40 km2; ~3200 km2 (ohne Aare ...→ Richard La Nicca, Bern 1842); 4000; Flüsschen "Schüss" kann Zihl verlegen; Alte Zihl 1,5 km rd. 5 m bei Port: 3,5 ‰ Gefälle;
    • Neuenburgersee 430 m, 218 km2; 2.670 km2; 4000; ursprünglich 1,2 m über Bielersee; wahrscheinlich mit 5-km-Kanal (vor-)abgesenkt
    • Murtensee 429 m, 22,8 km2; 693 km2; ursprünglicher Abfluss nach Nordosten: 10 km (Kallnach) fast ohne Gefälle; 3000 v.Chr.

  • Savoyische Seen ~430-550 m; 3500 v.Chr.

  • Federsee 578 m, 1,4 km2; 35,4 km2; 4000 v.Chr.
  • Starnberger See (bis 1962 Würmsee) 584 m, 58,4 km2; 314 km2; Würm mäandert lustlos ohne Moräne mit wenig Gefälle; 4000 v.Chr.
  • Ammersee (Altheimer Gruppe) 533m, 46,6 km2; 993 km2; Amper nach 12 km 528 m: 1 ‰ Gefälle; 3500 v.Chr.

  • Attersee 469 m, 46,2 km2; 464 km2; Ager MQ 17,1 m³/s, HHQ 110 m³/s; 3,6 ‰ auf 34 km; 4000 v.Chr., Ndf VRI 4310 ± 90 v.Chr.
  • Mondsee 481 m, 13,8 km2; 247 km2; Seeache MQ 9,14 m³/s, HHQ 73,4 m³/s; Gefälle 4 ‰ auf 3 km; VRI 4910 ± 130 v.Chr.
  • Keutschachersee 506 m, 1,3 km2; 30 km2; VRI 5420 ± 60 v.Chr.
    • Mattsee|Obertrumer See|Grabensee: alle 503 m – Mattig in 8 km 491 m: 1,5 ‰ Gefälle;
    • Wallersee: 506 m – Fischbach fließt km-lang flach dahin;
    • Wolfgangsee: 538 m – Ischler Ache fließt 4 km bis 514 m mit ≈ 6 ‰ Gefälle;
    • Fuschlsee: 665 m – max 2 ha Strandplatten; entwässert in Mondsee;

  • Lago di Varese 238 m, 15 km2; 112 km2; 5300 v.Chr.
  • Gardasee 65 m (größte Tiefe 346 m), 370 km2; 3556 km2; 2200 v.Chr.
  • Ledrosee 655 m; 2,2 km2; 111 km2; 2000 v.Chr.
  • Lago di Viverone, 230 m, 5,8 km2; 25,7 km2; 1450 v.Chr.

111 Pfahlbaustationen: Seehöhe, heutige Lage unter/über Wasser, Örtlichkeit

Im Folgenden werden Informationen zu den 111 UNESCO-Pfahlbaustationen gebracht unter Verwendung von

  • Google-Earth: Damit wurde die Tiefen-Lage der 111 Stationen an den Seerändern einzeln abgeschätzt, wobei man bei den bei Sonnenschein aufgenommenen Google-Bildern wegen der unterschiedlichen Farbe einfach seichte von tieferen Stellen unterscheiden kann. [Dieses Vorgehen wurde dadurch erforderlich, da es überraschenderweise zu den meisten Pfahlbau-Stationen keine Tiefenangaben gibt.]

Die 56 Schweizer Stationen weisen eine durchschnittliche Seehöhe von 429 m ü.A. auf; die fünf österreichischen Stationen zeigen durchschnittlich 479 m ü.A.; 18 Stationen in Süddeutschland liegen auf 485 m ü.A.; die 11 französischen Stationen auf 367 m ü.A.; die 19 italienischen Stationen liegen auf nur 167 m ü.A. und die beiden slowenischen Stationen liegen auf 288 m ü.A.

45 Stationen liegen auf einer Seehöhe zwischen 400 und 449 m ü.A. und weitere 25 Stationen liegen auf Seehöhen zwischen 450 und 600 m ü.A. (2 Stationen auf 612 m und 652 m ü.A.); 17 Stationen haben Seehöhen zwischen 350 und 399 m ü.A.

In den nachfolgenden Tabellen werden angegeben:

  • UNESCO-Nummer und Örtlichkeit der Station, See-Name samt Seehöhe über Adria und vor allem die
  • konkrete Lage der Pfahlbau-Station
    • am Seerand im Flachwasser (einige wenige Meter Tiefe: entsprechend der Anmutung in Google-Earth)
    • oder trocken auf dem heutigen Ufer
  • geschätzte Ausdehnung der Strandplatte Richtung See (ev. auch deren Länge parallel zum Ufer)
Höhenverteilung Schweizer Pfahlbaustationen; die niedrige-Seehöhe-Stationen liegen am Genfersee

Es gibt offenbar eine besonders bevorzugte Seehöhe für die „klassischen“ Pfahlbaustationen, wie der eingefügten Tabelle und der Grafik zu entnehmen ist. Einerseits sind das die Seehöhen zwischen 400 und 450 m mit 44 Stationen, andererseits liegen sogar 66 der 111 UNESCO-Pfahlbaustationen – das sind knapp 60 % – innerhalb von nur 120 Höhenmetern: und zwar zwischen 395 m und 514 m ü.A.

Es ist wohl davon auszugehen, dass sich diese Gegebenheiten noch verstärken, wenn man sich auf vergleichbare Rahmenbedingungen konzentriert wie z.B. Beschränkung auf die ehemaligen Gletscherrandgebiete nördlich der Alpen oder die französischen Stationen. Allein 45 der 56 Schweizer Stationen liegen innerhalb eines engen Bereichs von nur 60 Höhenmetern und zwar von 400–460 m ü.M.

Wie den Tabellen zu entnehmen ist, liegen die Pfahlbaustationen ganz überwiegend unter Wasser – und regelmäßig in vergleichsweise wenig tiefem Wasser (einige Meter). Hinsichtlich der Pfahlbauten, die heute am trockenen Land liegen kann nur vermutet werden, dass diese zu einer Zeit mit hohem Wasserstand errichtet worden sind. Bei solchen Stationen dürfte es demnach nicht mehrere Kulturschichten mit zwischengelagerter Seekreide geben (was einfach zu überprüfen ist).

Die Pfahlbaustationen unter 400 Höhenmetern zeigen offenbar einen anderen Siedlungszugang.

Da die 111 Stationen bereits eine Auswahl darstellen, können die hier gebrachten Auswertungen nur qualitativ sein: für eine generelle Aussage müssten alle über 1000 Stationen in zeitlicher und räumlicher Dimension systematisch untersucht werden, was aber über den hier gesteckten Rahmen hinausgeht; wissenschaftlich relevant (und interessant) wäre dies allemal.

Verteilung der 111 UNESCO-Pfahlbaustationen auf Höhenbereiche
Höhenverteilung der 111 UNESCO-Pfahlbaustationen
Höhenbereich in m ü.A. Anzahl
über 600 m 2
550-600 m 9
500-550 m 6
450-500 m 9
400-450 m 44
350-400 m 17
300-350 m 0
250-300 m 6
200-250 m 7
150-200 m 0
100-150 m 3
50 -100 m 5
3-50 m 3

Schotterüberdeckung von Stationen: Kliffbildung und Wellenerosion OFFEN

Hydrologie der Salzkammergut-Seen für die Kanal-Pfahlbauern

Niederschlagsverteilung Traunsee-Gebiet 12.+13.9.1899
Linz < 50 mm; Attersee 250 mm; Hallstättersee > 350 mm

Extremniederschläge im Traungebiet September 1899

Flögl 1980, Helmut & Blaschke, Hans: → Die Hochwasserretention der Salzkammergutseen. Sonderband Hochwasser-Abwehr des Landes OÖ, 1980, 20 Seiten.

Das extremste Hochwasserereignis wurde aufgrund der Niederschläge von nur zwei Tagen – am 12.+13.9.1899 – verzeichnet. (Nach: K.k. Hydrographischer Dienst in Österreich (1904): Das Traungebiet und die Verwertung des Retentionsvermögens der Salzkammergut-Seen zur Milderung der Hochwassergefahren.)

Die Niederschläge nur dieser beiden Tage betrugen in Linz weniger als 50 mm; beim Attersee rd. 250 mm; im inneren Salzkammergut 300 mm und beim Hallstättersee sogar über 350 mm.

Aber auch Niederschlagsereignisse der jüngeren Zeit z.B. 2.-5.6.2013 konnten regional ziemlich stark ausfallen:

  • Weißenbach v. 2.6.2013 Pegel 303 cm mit HQ 114 m³/s und einer Jährlichkeit von 200 Jahren
  • See/Mondsee 3.6.2013 Pegel 356 cm mit HQ 94,1 m³/s und einer Jährlichkeit von 25 Jahren
  • Raudaschlsäge 5.6.13 Pegel 108 cm mit HQ 93,5 m³/s und einer Jährlichkeit von 15 Jahren

Hydrologischer Vergleich in Frage kommender großer Seen

Hydrologischer Vergleich Attersee : Mondsee : Wolfgangsee : Traunsee
Einzugsge-
biet E [km²]
Seefläche
F [km²]
Verhältnis
E / F
Seeinhalt
[Mio. m³]
Abfluss MQ
in [m³/s]
Durchfluss-
dauer [a]
Hochwasser
1899 [cm]
HHQ-Speicherg
1899 [Mio m³]
Attersee 462 46,8 10,1 3.944 17,0 7,2 146 68,2
Mondsee 247 14,2 17,4 510 9,1 1,8 236 33,5
Wolfgangsee 123 13,2 9,2 619 5,4 3.9 187 24,6
Traunsee 1417 25,7 58,0 2.302 70,0 1,0 354 90,8

Daten: Rosenauer 1932: F.: → Über das Wasser in OÖ.; Flögl 1980:Die Hochwasserretention der Salzkammergutseen

Von allen in Frage kommenden Seen zeigt der Attersee von vornherein die günstigsten Hochwasserverhältnisse. Unter Berücksichtigung des Zwei-Seen-Systems mit dem Mondsee konnten für den Attersee aber noch zusätzliche Verbesserungen erzielt werden.

Wie der obigen Tabelle zu entnehmen ist, kam der Traunsee schon wegen seiner extremen Hochwasserverhältnisse für eine neolithische Besiedlung nie in Betracht: Die Seespiegel-Schwankung zwischen Mittelwasser und Hochwasser betrug mehr als vier Meter.

Das Attersee-Mondsee-System – man muss den Mondsee beherrschen!

Vergleich Mondsee : Attersee : (Attersee ohne Mondsee)
MQ = mittlerer Abfluss; HHQ = höchster Hochwasserabfluss
Einzugs-
gebiet [km²]
Seefläche
[km²]
MQ
[m³/s]
HHQ
[m³/s]
Mondsee allein 247 13,8 9 73
Attersee mit Mondsee 463 60,0 17 110
Attersee ohne Mondsee 217 46,2 8 37

Wie der Tabelle und den für Pfahlbausiedlungen besonders bedeutsamen Hochwasser-Verhältnissen HHQ (= höchster Hochwasserabfluss) entnommen werden kann, sind die Hochwässer des Mondsees (Abfluss 73 m³/s bei kleiner Seefläche) die hauptsächliche Ursache für die Attersee-Hochwässer des gemeinsamen Systems Mondsee-Attersee (110 m³/s). Diese sind für den Attersee im Gesamtsystem dreimal so schwierig wie für den Attersee allein (37 m³/s - wegen des geringeren direkten Einzugsgebietes und der viel größeren Seefläche).

Extrem-Hochwasser am Attersee 11.-20.9.1899

Wie der obigen Tabelle zu entnehmen ist, verdoppelt sich der alleinige Attersee-Abfluss bei Hochwasser (37 m³/s) nur auf das Doppelte des Normal-Abflusses (17 m³/s), wenn man den gleichzeitigen Hochwasserabfluss des Mondsees verhindern kann.

Wenn man den Attersee besiedeln wollte, musste man die drohenden Hochwässer des Mondsees beherrschen.

Wenn man für ein Starkregenereignis eine Verhinderung der Abflusswelle des Mondsees in den Attersee für die Dauer von 3 Tagen annimmt, erhöht sich bei dieser Wasserrückhaltung der Spiegel des Mondsees um ~ 1 ½ m (73 m³/s x 3.600 s x 24 h x 3 Tage = 18,9 Mio. m³ geteilt durch 13.8 Mio. m² Seefläche = 1,37 m). Mit einer Vorabsenkung um 3 m liegt man auf der sicheren Seite.

zu beherrschende Hochwasserereignisse am Mondsee

Wie der nebenstehenden Grafik zu entnehmen ist, bringt das stärkste Hochwasserereignis am Mondsee innert eines Jahrhunderts einen Seespiegelanstieg um maximal 2 ½ m.

Wenn man den Mondsee-Abfluss z.B. um rund 3 m vorab absenkte, hätten die Auswirkungen eines Starkregen-Ereignisses auf den Attersee durch entsprechenden Aufstau des Mondsees minimiert werden können.

Damit die Pfahlbauten in See/Mondsee auch bei einer Hochwasserrückhaltung des Mondsees auf dem Trockenen blieben, wäre eine Absenkung des Mondsees um rund 4–5 m zielführend gewesen (vgl. Janik-Veröffentlichung mit 6 m bei Möbelfabrik).

Seeretention HW 9/1920: - - - Abfluss ohne Retention [m³/s]

Es ist allgemein geläufig, daß bei steigenden Zuflüssen zu einem See dessen Wasserstand einige Zeit steigen muß, bis der Abfluß gleich groß wird wie der Zufluß. Dieser Effekt wird Seeretention genannt. Ebenso wird bei fallenden Zuflüssen der Seeabfluß nachhinken und sich erst allmählich dem kleiner werdenden Zufluß anpassen.

Die vergleichsweise beherrschbaren Hochwässer von Mondsee und Attersee stehen in starkem Kontrast zu den Verhältnissen am Traunsee: Der Hochwasserabfluss des Traunsees hätte 1920 ohne Seeretention 1400 m³/s betragen, wies aber trotz der Seeretention noch immer einen Wert von 1050 m³/s auf - das ist rund das 6fache von Mondsee und Attersee. Der Traunsee war für die Kanal-Pfahlbauern sicher nicht beherrschbar.

Durch die natürliche Seeretention kommt es auch zu einer Reduktion der ohne diese (theoretisch) auftretenden Seespiegel-Erhöhungen des Attersees: 1918: 90 cm (statt 320 cm ohne Retention); 1920: 130 cm (statt 350 cm); 1954: 110 cm (statt 280 cm); 1959: 130 cm (statt 490 (!) cm). Im Jahr 1959 betrug vor / während des Hochwassers der Abfluss 30 / 115 m³/s bei einem Seestand von 469,40 / 470,20 m ü.A.

Die höchsten Wasserspegeldifferenzen zwischen Hochwasserspitze und dem Ausgangswasserspiegel unmittelbar vor der Hauptwelle betrugen für den Attersee 1899: 1,05 m; für den Mondsee 1899: 2,28 m und für den Traunsee 1897: 3,35 m (!).

Die Hochwässer weisen bei den im folgenden angeführten Jährlichkeiten (= Auftretenswahrscheinlichkeiten alle ... Jahre) folgende Abflussmengen auf:

  • See (See-Ache): 40 m³/s (jährlich); 80 m³/s (alle 10 a); 100 m³/s (alle 30 a); 120 m³/s (alle 100 Jahre)
  • Raudaschlsäge: 43 m³/s (jährlich); 85 m³/s (alle 10 a); 110 m³/s (alle 30 a); 140 m³/s (alle 100 Jahre)

Kein hoher/niedriger Wasserstand wegen feuchtem/trockenem Klima möglich

Abfluss aus Attersee abhängig vom Wasserstand

Wie der Abbildung der „natürlichen Konsumtionskurve“ des Attersee-Abflusses (Flögl 1971) entnommen werden kann, steigt der Abfluss in Abhängigkeit von der Seehöhe exponentiell an, wie man auf einfache Weise durch Drehen der Abbildung (Wasserstands-Achse liegt dann als Abszisse unten) – und damit dem Vertauschen der beiden Achsen – erkennen kann.

So beträgt der Attersee-Abfluss bei einer Seehöhe von 469,0 m: 20 m³/s; bei einer Seehöhe von 469,5 m: 50 m³/s; bei einer Seehöhe von 470,0 m bereits 110 m³/s und bei einer Seehöhe von 470,5 m über 230 m³/s.

Die beiden eingezeichneten Punkte bezeichnen die Wasserstände und Abflüsse der extremen Hochwässer der Jahre 1899 (470,4 m; 190 m³/s) und 1959 (470,05 m; 110 m³/s).

Demgegenüber wird der Attersee bereits bei einer Seehöhe von 468,5 m abflussfrei.


Die Attersee-Pfahlbauten werden (geschätzt) in Seehöhen von ca. 464 - 467 m ü. A. gefunden.

[Anm.: Die österreichischen Pfahlbauten werden nach Abschätzungen aufgrund Google-Earth-Bildern in Seetiefen von ca. 464–467 m ü.A. gefunden, wobei hierzu bestimmte Sichttiefen für das Wasser angenommen werden. Mit Ausnahme von Schweizer Arbeiten (z.B. Suter - Kleiner Hafner) gibt es in den Veröffentlichungen nur selten konkrete Tiefenangaben.]

Verwendete Literatur

K.k. Hydrographischer Dienst in Österreich (1904): Das Traungebiet und die Verwertung des Retentionsvermögens der Salzkammergut-Seen zur Milderung der Hochwassergefahren. Hrsg. vom k. k hydrographischen Zentral-Bureau, Wien. Verlag W. Braumüller, Wien 1904.

Rosenauer 1932, F.: → Über das Wasser in OÖ. JBOÖMV 1932:356–378.

Flögl 1980, Helmut; Blaschke, Hans: → Die Hochwasserretention der Salzkammergutseen. Hochwasser-Abwehr (Sonderband des Landes OÖ) 1980, 20 Seiten.

Nachtnebel 2008, Hans-Peter et al.: → Wasserwirtschaftliche Entwicklung in Überflutungsgebieten. Institut für Wasserwirtschaft, Hydrologie und konstruktiven Wasserbau, BOKU. 255 Seiten. Teil Attersee S. 17–36.

BMLFUW 2015:Hochwasser Juni 2013 – Ereignisdokumentation; BMLUFUW Sept. 2015, 90 Seiten.

Physikalische Daten zu Klima-Auswirkungen auf Seespiegelhöhen

Verdunstung als theoretische Ursache von Seespiegelabsenkungen?

Globalstrahlungsdaten: Schweiz 1.000–1.500 kWh/m² pro Jahr; Österreich 1.100–1.400 kWh/m² pro Jahr: Konstanz 1194 kWh/m² pro Jahr
Hier wird eine Globalstrahlung von 1.200 kWh pro m² und Jahr auf die Flächen der einzelnen Seen zu Grunde gelegt, die für eine Verdunstung zur Verfügung steht: 1.200 x 1000 (kilo) x 1 W x 3.600 s (Stunde) = 4,32 GJ/m².Jahr

Abschätzung der erforderlichen Verdunstungswärme von Wasser:

  1. Erwärmung des Wassers von 20 ˚C auf 100 ˚C mit 4,1868 kJ/kg.K … 335 kJ/kg (100 ˚C)
  2. Verdunstungsenthalpie (Lit.-wert) von Wasser mit theoret. 100 ˚C … 2258 kJ/kg Dampf
  3. insgesamt erforderlich Gesamtwärme je kg Wasserdampf 2593 kJ … 2593 MJ/m³ H2O
Ermittelte Daten für die einzelnen Seen
See-Fläche
in km²
Einstrahlung
in 1015 Joule/a
Verdunstung
in Mio. m³/a
MQ-Abfluss
in Mio. m³/a
Verdunstung/
Abfluss in %
Dauer für 5-m-Anstieg
falls Abfluss verlegt
Bodensee 536,0 2.316 893 7.915 11,3 124 Tage
Zürichsee 90,1 389 150 3.185 4,7 52 Tage
Bielersee *) 42,0 181 70 2.838 2,5 27 Tage
Attersee 46,2 200 77 539 14,3 155 Tage
Mondsee 13,8 60 23 288 8,0 87 Tage

*) Künstliche Werte des Bielersees vor der Juragewässerkorrektion sind aus der Literatur abgeschätzt. Einflüsse der damals lebhaft agierenden Aare auf das 3-Seen-Land und den Bielersee zur Pfahlbauzeit sind ungewiss.

Falls beim Verlassen eines Pfahlbausees der Seeabfluss bewusst – aus welchem Grund auch immer – durch Verlegung des Abflusses unterbunden wird, dauert ein Aufstau um z.B. 5 Meter am Zürichsee durchschnittlich 52 Tage, am Bodensee 125 Tage, am Mondsee 87 Tage und am Attersee 155 Tage.

Paradoxe Ergebnisse der Verdunstungs-Theorien

Falls man Verdunstungstheorien näher tritt, dass die Seen wegen hoher Verdunstung abflusslos geworden wären und dadurch die Flächen der Siedlungen trocken fielen, fallen einem die sehr unterschiedlichen Verhältnisse zwischen Verdunstung und durch diese zu ersetzende Abflüsse auf. Für Verdunstung als Ursache der Seespiegelabsenkungen hätte die Sonneneinstrahlung um das unvorstellbare sieben- bis zwanzigfache höher sein müssen, was als völlig illusorisch auszuschließen ist.

Weiters sind bei den einzelnen Seen sehr unterschiedliche Verdunstungs-/Abfluss-Verhältnisse festzustellen. Falls die Verdunstungstheorien zuträfen, wären die Seespiegelabsenkungen zwischen den einzelnen Seen völlig unterschiedlich ausgefallen und es gäbe keine ähnliche Tiefenlage der Pfahlbausiedlungen, wie sie heute vorgefunden werden.

Besonders paradox wären die Gegebenheiten im Salzkammergut gewesen: Unter der (illusorischen) Annahme, dass der Mondsee wegen Verdunstung abflusslos geworden wäre, ergäbe sich für den Attersee die Situation, dass bei ihm das Verdunstungs-/Abfluss-Verhältnis im Vergleich zum Mondsee um das Vierfache stärker gewirkt hätte, da ihm ja der Zufluss vom Mondsee abhanden gekommen wäre. Damit wäre die Absenkung beim Attersee viel tiefer gewesen – was aber nicht der Fall ist.

Frühe Ablehnung der Verdunstungstheorien

Fritz Cramer weist bereits 1936 mit seinen "Klimaschwankungen am Zürichsee?" darauf hin, dass der Zürichsee bei gleichem Zufluss aufgrund von Verdunstung nicht abflusslos werden konnte und kommt zum Schluss (S. 130), dass hierfür die Oberfläche des Zürichsees um das 63fache größer sein müsste. [Anm.: Mit heutigem Wissen zur Globalstrahlung, wäre die 21-fache Fläche ausreichend gewesen.]

Suter mit Jacomet wollen 1987 (S. 19) beim Kleinen Hafner nicht erneut auf die Genese der einzelnen Schichten eingehen, sagen aber klar, dass „... ihre Abfolge ein Nacheinander von Phasen der Besiedlung des Kleinen Hafners und Phasen von (längeren) Siedlungsunterbrüchen (Siedlungslücken) widerspiegelt, während denen die Insel zeitweise vollständig oder teilweise überschwemmt war oder zumindest nicht als geeigneter Siedlungsstandort betrachtet worden ist.“, und ihre Bauten stehen auf trockenem Grund.

Geringer-Niederschlag-Theorien

Betrachtet man die Verdunstungs-/Abfluss-Verhältnisse, bewirkt auch geringer Niederschlag kein Trockenfallen von Strandflächen für Pfahlbausiedlungen; unter Umständen sinkt der Seespiegel entsprechend der geringeren Tiefe der Abflüsse nur um wenig. Ein geringerer Niederschlag vermag die Abfluss-Höhe nicht um mehrere Meter zu beeinflussen.

Auch Schindler bemerkt 1971 (S. 304) endlich selbst, dass er sich auf schwankendem Boden befindet, und versucht sich zu retten, wenn er schreibt: „ … der tiefstmögliche Seespiegel konnte nicht unter die Kote 403,5 m sinken, falls nicht der See für längere Zeit abflusslos wurde. Auf Grund paläobotanischer Untersuchungen schloss W. Lüdi (1951) diese Möglichkeit aber aus, denn ein derart arides Klima widerspricht der damals herrschenden Vegetation."

Klima und (keine dauerhaften) Seespiegelschwankungen

Weyregger Pfähle und Tag/Nacht-Bereich der Pfähle

Schmidt 1982, Roland: Pollen und Großreste aus der neolithischen Station Weyregg I am Attersee, OÖ. Fundberichte aus Österreich 21, 1982:157–169.

  • Zwei von rd. 20 cm Seekreide getrennte Kulturschichten; Pfähle aus der unteren Kulturschichte enden an der Oberkante der Seekreideschicht.
  • Baum- und NB-Pollen; Acker und Hackfruchtunkräuter; von Menschen verwendete Pflanzen

Gleichzeitigkeit der Besiedlung von Schweizer Seen/-gebieten

Dendrodaten zu Baudaten an verschiedenen Seen Grau=Dendrodaten Weiß=keine Daten. Pfeile=14C
  • Suter 1986, Peter und Schifferdecker, Francois: → Das Neolithikum im schweizerischen Mittelland. In: Chronologie – Archäologische Daten der Schweiz. Antiqua 15 der Schweizer. Ges. f. Ur- und Frühgeschichte. Basel 1986, S. 34–43. (Egolzwil, Kl. Hafner, Cortaillod usw. alle Epochen)

Die Grafik von Peter Suter, der sich eingehend mit den Stratigraphien am Kleinen Hafner aber auch erstmals mit der Gleichzeitigkeit der Besiedlung an einem gesamten See - dem Bielersee - tiefschürfend auseinandergesetzt hat, zeigt die neolithischen Siedlungen des schweizerischen Mittellandes.

  • grau: Bereich der dendrochronologisch nachgewiesenen Baudaten an den größeren Mittellandseen.
  • weiß: keine Schlagdaten nachgewiesen.
  • Pfeile: Ungefähre Datierung 14C-datierter Siedlungskomplexe (nur wenn Dendrodaten fehlen).

Wie der Grafik zu entnehmen ist, korrelieren die Besiedlungszeiten an den einzelnen Seen/-gebieten wenig oder gar nicht miteinander.

Eine Untersuchung der Gleichzeitigkeit aller Stationen des gesamten Bodensees - im Vergleich zur Arbeit von Peter Suter - wurde überraschenderweise bisher nicht in Angriff genommen, könnte aber erhellende Ergebnisse bringen.

Besiedlung (grau) mit tiefen Seespiegeln 3.900–800 calBC

Es steht wohl außer Zweifel, dass die Stationen des Bodensees bei tiefen Pegelständen besiedelt wurden: ansonsten wären deren Kulturschichten ja nicht unter Wasser gekommen und dadurch konserviert worden. Solche tiefen Pegelstände traten aber an allen Stationen des Bodensees zur gleichen Zeit auf.

Unter der Annahme, daß prähistorische Seeufersiedlungen bei tiefen Seespiegeln bewohnt waren, während ein hoher Pegelstand die Besiedlung unterbrach, gibt die linke Grafik eine Korrelation dendrochronologisch fixierter Stationen dreier Mittellandseen/-regionen (Westschweizer Seen, Zürichsee, Bodensee) zwischen dem Jungneolithikum und der Spätbronzezeit wieder.

Klima als Ursache von Seespiegelschwankungen? (ToDo)

Magny 1981, Michel; Olive, G.: Origine climatique des variations du niveau du lac Leman au cours de l'Holocene. La crise de 1700 ä 700 ans BC. In: Arch. suisses d'anthropol. gen. Geneve 45, 2, 159-170.

Zahlen auf Ordinate: Seenanzahl, mit allen
transgressiven/regressiven Schwankungen

Magny 1992, Michel: → Holocene lake-level fluctuations in Jura and the northern subalpine ranges, France: regional pattern and climatic implications. Boreas, 21 (1992), pp. 319-334. (vgl. nebenstehende Abbildung der S. 327: gleichzeitig Anstiege und Absenkungen der Seespiegel an mehreren Seen → es gibt also keinen Zusammenhang!)
[Zusammenfassung: Die holozänen Schwankungen des Seespiegels in jurassischen und französischen subalpinen Seen werden anhand sedimentologischer Analysen rekonstruiert, und es wird ein regionales Muster paläohydrologischer Veränderungen aufgezeigt. Die wichtigsten transgressiven Phasen erreichten ihren Höhepunkt um 8500 BP, 6500 BP, 4800 BP, 3500-2300 BP und 450 BP. (1) Die für eine große Zahl von Seen nachgewiesene Synchronität der holozänen Seespiegeländerungen, (2) die engen Korrelationen zwischen bestimmten Seen und (3) die Übereinstimmung zwischen dem Anstieg der Seespiegel im Jura und in den französischen Voralpen und dem Gletschervorstoß in den Schweizer und österreichischen Alpen sprechen für eine klimatische Steuerung dieser holozänen Seespiegelschwankungen.]

Magny 2004, M.: → Holocene Climate Variability as Reflected by mid-European Lake-Level Fluctuations and its Probable Impact on Prehistoric Human Settlements. Quaternary International 113 (1) 2004: pp. 65–79. doi:10.1016/S1040-6182(03)00080-6
Artikel hält nicht, was der Titel verspricht! Zitiert sich laufend selbst, wird aber 670 x zitiert!
[Zusammenfassung: Ein Datensatz von 180 Radiokohlenstoff-, Jahrring- und archäologischen Daten, die aus Sedimentsequenzen von 26 Seen im Jura, in den nordfranzösischen Voralpen und im Schweizer Mittelland gewonnen wurden, wurde verwendet, um einen holozänen mitteleuropäischen Seespiegel zu konstruieren. Die Daten weisen nicht auf eine zufällige Verteilung über das Holozän hin, sondern bilden Cluster, die auf einen Wechsel von niedrigeren und höheren, klimatisch bedingten Seespiegelphasen hindeuten. Sie belegen ein eher instabiles holozänes Klima, das von 15 Phasen mit höheren Seespiegeln geprägt war: 11 250-11 050, 10 300-10 000, 9550-9150, 8300-8050, 7550-7250, 6350-5900, 5650-5200, 4850-4800, 4150-3950, 3500-3100, 2750-2350, 1800-1700, 1300-1100, 750-650 cal. BP und nach 1394 AD. Ein Vergleich dieser mitteleuropäischen Seespiegel-Daten mit dem GISP2-Polar Circulation Index (PCI), den nordatlantischen Eisdriftzyklen (IRD) und der 14C-Aufzeichnung deutet auf Telekonnektionen in einem komplexen Kryosphären-Ozean-Atmosphären-System hin. Die Korrelationen zwischen dem GISP2-PCI, dem mitteleuropäischen Seespiegel, den nordatlantischen IRD-Ereignissen und den restlichen 14C-Aufzeichnungen deuten darauf hin, dass Veränderungen der Sonnenaktivität eine wichtige Rolle bei den holozänen Klimaschwankungen über dem Nordatlantik gespielt haben.]

Bleicher 2008, Niels: → Einige kritische Gedanken zur Erforschung des Zusammenhangs von Klima und Kultur in der Vorgeschichte. In: Strategien zum Überleben. Tagung Römisch-Germanisches Zentralmuseum Band 11, 2008. GEGEN MAGNY

[Trotz dieser Anhaltspunkte dafür, dass jener Ansatz problematisch ist, argumentierten auch andere Autoren in dieselbe Richtung – so z.B. Magny (2004), der sowohl die Seespiegel im Alpenvorland als auch die vorgeschichtliche Wirtschaft an die Sonnenaktivität gekoppelt sah:
»Phasen höheren Seespiegels fielen mit einer Zunahme des Jahresniederschlags, einer Abnahme der Sommertemperatur und einer Verkürzung der Vegetationsperiode zusammen. [...] Es ist bemerkenswert, dass die kulturellen Veränderungen im Neolithikum und in der Bronzezeit meist in Phasen höherer Seespiegel, d. h. kühlerer und feuchterer klimatischer Bedingungen, stattfanden, was wahrscheinlich zu einer Destabilisierung des früheren sozioökonomischen Gleichgewichts führte.« (ebenda 75f.).
Demgegenüber ist anzumerken, dass die von Magny rekonstruierten Seespiegelphasen bei genauerer Betrachtung nicht so überzeugend sind, wie ein Vergleich zwischen der von ihm erstellten »Score-Kurve« mit der 14C-Residualkurve vermuten lässt. Die von ihm mehrfach publizierte Score-Kurve (z.B. Magny 2004) basiert zum überwiegenden Teil auf der Summation der Wahrscheinlichkeiten von Radiokarbondaten; daher ist eine Ähnlichkeit mit der Kalibrationskurve schon fast zwingend – sie ermöglicht aber keine Rückschlüsse auf generelle regionale Seespiegelstände. Daher kann auch nicht argumentiert werden, dass sämtliche Phasen des kulturellen Wandels in Zeiten hoher Seespiegel stattgefunden hätten.]

Magny 2006, Michel; Urs Leuzinger; Sigmar Bortenschlager, Sigmar; Haas, Jean Nicolas: → Tripartite climate reversal in Central Europe 5600-5300 years ago. Quarternary Research 65, 3-19. (Klima als Grund für Seespiegelschwankungen)

Harrison 1996, Sandy; Yu, Ge; Tarasov, P.: → Late Quaternary Lake-Level Record from Northern Eurasia. Quaternary Research 45, 1996; p. 138–159. Bringen trotz Ankündigung im Artikel aber nichts zu Seespiegelschwankungen. Link zu → Abstract Harrison

Link zu vier → Swierczynski-Literaturen zum Mondsee (Diss. 2012, 2013) plus 5. Arbeit im Appendix: → Distinguishing floods, debris flows and hydrological changes in a 100-year varved sediment record from Lake Mondsee (Upper Austria); Hochwässer wd. des Neolithikums; Seespiegelschwankungen usw.

Schmidt 2023, Roland (AdW); Brauer, Achim (GFZ Potsdam); Lauterbach, Stefan: → Klimawandel in einer 130.000-jährigen Zeitreise durch das Mondseeland (Salzkammergut) – (Vegetations-, Gletscher-, Seen- und Siedlungsgeschichte). Buch; Mondseer Dokumentationen 2023. 68 Seiten.

Arbogast 2006, Rose-Marie; Stefanie Jacomet, Michel Magny, Jörg Schibler: → The significance of climate fluctuations for lake level changes and shifts in subsistence economy during the late Neolithic (4300-2400 cal B.C.) in Central Europe. Vegetation History and Archaeobotany, 15 (2006): 403–18.

Illusion längerdauernder Seespiegelabsenkung wegen zu geringem Zufluss (ToDo)

Quelle: Regulierung Zürichsee, Bundesamt für Umwelt BAFU, → Faktenblätter Seeregulierung (Juni 2020); www.bafu.admin.ch > Themen > Naturgefahren > Dossiers > Seeregulierung

Zürichsee: Volumen 3,9 km³; Jahresabfluss Limmat 3,03 Mrd. m³; (mittlerer Abfluss 96 m³/s (1938–2012); Seespiegelhöhe: 405,90 (min) – 406,80 (Hochwasser) – 407,01 (max) m ü. M.; 90 km² Seefläche; (theoretische Aufenthaltszeit des Wassers im See beträgt nur 283 Tage)

Reguliert werden die Seestände im Zürichsee nicht direkt beim Seeausfluss, sondern knapp zwei Kilometer limmatabwärts durch das Regulierwehr Platzspitz (knapp vor Sihl-Einmündung)

Bielersee: 244 m³/s (theoretische Aufenthaltszeit des Wassers im See beträgt nur 54 Tage)

Attersee: 3,94 km³; theoretische Wasserverweildauer: ~ 7,14 Jahre; Mittlerer Abfluss: 17,5 m³/s

Furger zu Seespiegelschwankungen und Siedlungsphasen am Bielersee

Seespiegelschwankungen am Bielersee bei Twann im 4. Jt.

Furger, Alex R. (Univ. Basel, Text) u. Hartmann, Fanny (Illustrationen): → Vor 5000 Jahren … So lebten unsere Vorfahren in der Jungsteinzeit in Twann (38 MB). Verlag Paul Haupt, Bern 1983. 172 Seiten.

Der Archäologe Furgler beschreibt in seinem ausgezeichnet geschriebenen und illustrierten und für jedermann gut lesbaren Buch auf S. 53/54 – samt eindrücklichen grafischen Darstellungen der hydrologischen Gegebenheiten von Aare, den drei Seen und der Zihl – als mögliche Ursachen für die Seespiegelschwankungen und Siedlungsphasen am Bielersee, dass die Aare bei Verlegung der Strecke bis Büren der Schicksalsfluss für die Uferbewohner gewesen ist. Aber auch Bergrutsche vom Jensberg könnten die untere Zihl und damit den Bielersee aufgestaut haben. Zahlreiche Hoch- und Niedrigwasserperioden wechselten sich im jungsteinzeitlichen Seeland in unregelmäßigen Abständen ab.

Auf den S. 55/56 bringt Furgler jene Grafiken, die der hier beigefügten Grafik zugrunde liegt. Im Gegensatz zu dieser verzeichnet Furgler aber während der Niedrigwasserperioden auch vorübergehende Hochwässer innerhalb der Siedlungszeiträume.

Anm.: Wenngleich Furgler Gründe für den Wasseranstieg - ebenso wie Lüdi - auf natürliche Ursachen zurückführt, widmet er sich dem fünfmaligen raschen Sinken des Wasserspiegels – um jeweils rd. fünf Meter – nicht. Dass sich auf zweimal rd. 170 Jahre dauernde Wasserhochstände kurzfristig niedrigere Wasserstände einstellten, kann wohl wenig glaublich durch wiederum natürliche Ursachen hervorgerufen worden sein. Es sei hier auch darauf verwiesen, dass sich Seekreide nur bei einer länger dauernden Überdeckung ab einem halben Meter Tiefe bildet, was einer kurzzeitigen, vorübergehenden Überschwemmungssituaton widerspricht. Grundsätzlich ist – im Laufe der 860 Jahre dauernden Siedlungsgeschichte Twanns – auffällig, dass sich die Vielzahl von Wasserhoch- und -niedrigständen immer zwischen denselben Koten abspielt, was bei natürlichen Ursachen wohl nicht so regelmäßig eintreten würde.

Lüdi zu Seespiegelschwankungen

Lüdi 1935, Werner: → Kap. XIII: Postglaziale Seespiegel- und Grundwasserschwankungen, Ueberschwemmungs- und Trockenhorizonte im Gebiete zwischen Alpen und Jura. Veröff. Geobotan. Inst. Rübel in Zürich. Band 11, 1935. → Quelle

S. 289–290: Wauwil: „... kann man die Entwicklungsgeschichte des Wauwilermooses wie folgt zusammenfassen: Im Gebiet der Pfahlbaudörfer war offener See und es erfolgte Seekreideablagerung bis ins Neolithikum, das hier in die Buchenzeit fällt. Dann fiel der Seespiegel rasch ab; auf der Seekreide bildete sich eine dünne Torf- (oder Gyttja-?) Schicht; die Bodenoberfläche trocknete aus und wurde vom Pfahlbauer besiedelt. Nach der Zeit der neolithischen Pfahlbauten (waldgeschichtlich in der Tannenzeit), vielleicht auch bereits innerhalb der Pfahlbauzeit, hob sich der Wasserspiegel wieder, und es folgte mächtige Torfbildung.“

S. 296: Zürichsee: „In Zürich wiederholt sich die Eigentümlichkeit der Lage, die wir am Genfer-, Bieler-, Thuner-, Vierwaldstättersee gefunden haben, dass nahe dem Seeausflusse ein Gebirgsfluss, der leicht zu Hochwasser anschwillt und in diesem Zustande viel Geschiebe führt, sich mit dem aus dem See ausfliessenden Flusse vereinigt. Hier ist es die Sihl, welche die Wasser der Schwyzer Alpen der Limmat zuführt und den Seespiegel weitgehend zu beeinflussen vermag. Kleinere, vom Zürichberg herunterkommende Bäche dagegen werden kaum eine wesentliche Wirkung ausgeübt haben.“

S. 297–298: Zürich: viele Funde von Torf, Seekreide usw. deutlich unter heutiger Seespiegelhöhe (widersprechen deutlich den apodiktischen Feststellungen von Schindler).

S. 305: Bodensee: Zur Zeit der Ablagerung des untern Torfes sei die Seespiegelhöhe mindestens 3 m niedriger gewesen als heute (396 m). Gams und Nordhagen können tiefen Wasserstand des Bodensees in der Pfahlbauzeit und auch für den Untersee belegen. Anderseits ist in Bodman am Untersee die unterste neolithische Kulturschicht mit 20—35 cm Kalkschlick überdeckt. Auch bei Arbon liegt am Seeufer eine mit Sand und Lehm überführte neolithische Station. Dadurch wird ein vorübergehender neolithischer Seehochstand wahrscheinlich gemacht.
Reinerth (1922, S. 15) setzt den Seespiegel der Bronzezeit auf 3—5 Meter niedriger an als er heute ist.

Das Beispiel des Bodensees

Der Abfluss des Bodensees

Der Abfluss des Untersees zeigt recht "einseitiges" Abflussverhalten, das sich vor allem auf dessen nördliche Seite konzentriert. Offensichtlich gibt es vergleichsweise tiefe Abflussrinnen, denen der Wasserstrom folgt. Die Tiefenangaben der Internationalen Gewässerschutzkommission für den Bodensee mit dem zugehörigen → Internet-Link ermöglichen, den Verlauf der Rinnen detailliert zu verfolgen.

Die Abflussrinne im Bodensee-Untersee bis Stein am Rhein

Abflussrinne im Bodensee-Untersee bis Stein/Rhein Internat. Gewässerschutzkomm. Bodensee: → Link

Überraschenderweise besitzt der Abfluss des Untersees eine klar erkennbare Abflussrinne, die sich am nördlichen Ufer anschmiegt, wie der → Tiefenkarte der Internationalen Gewässerschutzkommission für den Bodensee zu entnehmen ist.

Bei Öhningen hat diese Rinne zumindest bis zur Stiegerstraße eine Tiefe von 10 Metern (vgl. kleines Bild in der nebenstehenden Grafik).

Eine deutlich zu erkennende und mit 12 m deutlich tiefere Rinne am südlichen Ufer (vor Eschenz) endet recht abrupt und setzt sich nicht weiter fort.

[Frage: War das die ursprüngliche Abflussrinne des Untersees? Wurde diese Rinne durch die Schüttungen des Dorfbachs und des Auerbachs verlegt? Und was hat es zu bedeuten, dass diese Rinne auch heute noch um 8 m tiefer ist als jene beim gegenüberliegenden Ufer zwischen Öhningen und Stein?]

Zwischen Öhningen und Stein/Rhein gibt es eine Strecke - wieder am nördlichen Ufer - auf einer Länge von 1 bis 1 ½ km mit einer geringeren Wassertiefe von rd. 4 Metern. Südlich davon ist der Seeabfluss deutlich seichter.

Diese 4 m tiefe Abflussrinne im Untersee vor Stein/Rhein wird wohl durch entsprechende Erosion laufend offen gehalten: falls durch Bachschüttung diese Rinne z.B. um einen Meter seichter würde, ergäbe sich eine höhere Strömungsgeschwindigkeit und das Material würde spätestens beim nächsten Hochwasser abtransportiert.

Bei Stein am Rhein engt sich die Abflussrinne stark ein, sodass sich die Strömungsgeschwindigkeit erhöht und die Wassertiefe auf über 7 Meter anwächst.

Höhenkoten und Gefälle des Rheins bis Schaffhausen

in der Bildmitte: Stein am Rhein mit 397 m ü.M.; links oben: Hemishofener Brücken 393 m ü.M.

Google-Earth-Daten (10.9.2023):

  • Eschenz/Öhningen (Untersee) 397 m ü.M.; nach ~ 1 ½ km →
  • Stein am Rhein 397 m ü.M.; nach ~ 2 km mit 2 ‰ Gefälle
  • Hemishofen 393 m ü.M.; nach ~ 6 km mit 1 ‰ Gefälle →
  • Diessenhofen 387 m ü.M.; nach ~ 8 km mit ¼ ‰ Gefälle →
  • Schaffhausen 385 m ü.M.

Nach Stein am Rhein fließt der Rhein an der Station "Im Hof" mit dem beachtlichen Gefälle von rund 2 ‰ vorbei bis zu den 2 km entfernten Hemishofener Brücken.

Der Rhein hat gleich nach Stein am Rhein mit rd. 300 m und bei den Hemishofener Brücken mit über 300 m ein besonders breites Flussbett, sodass sich eine geringere Strömungsgeschwindigkeit ergibt.

Anm.: Zum Vergleich sei angeführt, dass die Donau in Österreich ein Gefälle von 0,5 ‰ aufweist und damit als "Mittelgebirgsfluss" eingestuft wird. Sie hat dabei – frei in ihrem vglw. engen Bett fließend – eine Strömungsgeschwindigkeit von rd. 10–15 kmh.

Konkrete Gegebenheiten des Seeausrinns zw. Stein/Rhein und Hemishofen

Seeausrinn zw. Stein am Rhein und Hemishofen

Strebel 2020 (S. 6) berichtet: „Der unregulierte, natürliche Seeabfluss ist schweizweit einzigartig. Am größtenteils kiesigen Gewässergrund befinden sich Felder und Riffe poröser Kalktuffe. Diese sind Habitat für zahlreiche Kleinlebewesen, welche wiederum eine reiche Nahrungsquelle für Wasservögel darstellen. Im Winter liegt die Wassertiefe über dem größten Teil der Flussbreite in einem Bereich von 1–3 m.

Flussaufwärts des Gebiets befinden sich strömungsarme Buchten, Inseln und Kiesufer, welche sich gut als Ruhe- und Schlafplätze für Wasservögel eignen. Mit dem Seebecken am Untersee-Ende steht den Wintergästen eine zumeist strömungsarme Wasserfläche als Schlafplatz zur Verfügung, welche nicht weit von den nahrungsreichen Flussabschnitten entfernt ist. Das Untersee-Ende und der anschließende Rheinabschnitt decken sämtliche Ansprüche ab, um Tauchenten und Blässhühnern als herausragendes Überwinterungsgebiet zu dienen (Leuzinger 1976, Suter 1982a).“

Wie ist ein Szenario für eine Seespiegelabsenkung des Bodensees vorzustellen?

Grundsätzlich lag zumindest in der Bronzezeit der Wasserspiegel des Bodensees auf 392 m und damit um 4-5m unter dem heutigen Niveau.

Voraussetzung für das hier gezeichnete Szenario sind hydrologische Kenntnisse des "Abgrabens" von Abflüssen von anderen bereits abgesenkten neolithischen Seen.

Wasserführung des Alpenrheins

Eine Seespiegelabsenkung des Bodensees müsste mit einer Eintiefung der Sohle des Rheins bei Hemishofen und dort bei bereits tiefer Stelle und höherer Strömungsgeschwindigkeit in Angriff genommen werden. Der Rhein ist bei Hemishofen besonders breit (über 300 m), sodass die Fließgeschwindigkeit nur gering ist. Das Gefälle des Rheins beträgt aber im Abschnitt bis Stein/Rhein rund 2 ‰, was einem "Mittelgebirgsfluss" entspricht. [Anm.: Der Inn hat von Innsbruck bis Kufstein ein Gefälle von 2 ‰.] Die Arbeiten müssen vorrangig in den ersten vier oder letzten zwei Monaten des Jahres durchgeführt werden, da dann der Rhein eine geringe Wasserführung hat (Grafik).

Illustrierendes Bild zum Treideln

Erstes Abgraben mittels langen Stangen bewirkt am Grund des Flusses höhere Fließgeschwindigkeit, die das Bodenmaterial flussabwärts abtransportiert. Betrachtet man die heutige Situation (z.B. mit Google-Earth), dann bietet sich hierfür die Rinne am nördlichen Ufer an. Dabei muss möglichst ufernahe im Fluss mittels Einbaum, der sich flussaufwärts auf dem noch langsam fließenden Abschnitt befindet, gearbeitet werden. Dieser Einbaum wird mittels Seil am Flussufer an Bäumen verankert. Das entspricht einer Treidel-Technik, mit der der Einbaum auch im Fluss agieren kann (vgl. hierzu Treideln, Treppelweg (Österreich) oder Reckweg (Schweiz)).

In dem ersten so entstehenden "neuen Kanal" fließt immer mehr Wasser, da nun auch das Wasser der ehemals seichten Stellen des vorher so breiten Flussabschnitts in diesem "Kanal" fließt. Da dieser einen geringeren Querschnitt als der breite Fluss hat, ergibt sich eine höhere Fließgeschwindigkeit, die zumindest das feinere Material rasch abtransportiert und damit diesen "ersten Kanal" weiter eingräbt.

Diese "Rückwärtserosion" wird flussaufwärts vorangetrieben, wobei die erhöhte Strömungsgeschwindigkeit in dem solcherart entstehenden "Kanal" diesen Prozess besonders bei der jeweils immer mehr flussaufwärts gelegenen Arbeitsstelle aufgrund des immer höher werdenden Gefälles umso mehr begünstigt.

Wenn dieses Abgraben fortgesetzt wird und man nach ca. 2,5 km Abgraben bei "Im Hof" bei Stein/Rhein mit einer Eintiefung von 3 Metern anlangt, setzt sich dieser Prozess von selbst ohne jeglichen weiteren Aufwand bis in den Untersee und den Bodensee fort:

Die Wassertiefe bei Stein/Rhein beträgt heute und ursprünglich wohl auch rd. 7 m, die durch die beschriebene Rückwärtserosion unvermittelt auf z.B. 4 m erniedrigt wird. Das bedeutet, der Höhenunterschied zwischen Untersee und dem Rhein bei "Im Hof" beträgt damit plötzlich 3 Meter.

Das bedeutet ein unmittelbar auftretendes enormes Gefälle für das ausströmende Wasser des Untersees. Dadurch wird die bisherige Sohle der Abflussrinne im Untersee rasch seewärts ("rückwärts") erodiert und abtransportiert, bis der Wasserspiegel des Untersees und damit des Bodensees die Höhe des abgegrabenen Rheins erreicht.

Bei einer Absenkung von Untersee und Bodensee um 3 Meter fließen 1,6 Mrd. m3 (= 15 % des gesamten Bodensee-Jahresabflusses) in kurzer Zeit durch die Abflussrinne und haben aufgrund des Gefälles (entsprechend Hochgebirgsfluss) genügend Kraft, um die Rinne rückwärts-erodierend rasch tiefer zu graben.

Abfluss-Situation beim Bodensee

Abflussverhältnisse

Wieder-Aufstau nach Arbon Bleiche nicht mehr gelungen? (vglbar Wauwil)

Keller, Oskar / Krayss, Edgar: → Die letzte Vorlandvereisung in der Nordostschweiz und im Bodensee-Raum (Stadialer Komplex Würm-Stein am Rhein). Eclogae Geologicae Helvetiae 73 (1980); 18 Seiten.

Oskar Keller/Edgar Krayss: → Die hochwürmzeitlichen Rückzugsphasen des Rhein-Vorlandgletschers und der erste alpine Eisrandkomplex im Spätglazial. Geographica Helvetica 1987. 10 Seiten.

Legler, G. (Hauptmann im Geniestabe): → Denkschrift über die Abflussverhältnisse des Bodensees von Constanz bis Stein (1862) v.a. S. 19 ff.

Sohle des Bodensees (Konstanz, Eschenz, Stein) → Bodensee-Regulierung, Hochwasserschutz, Kraftnutzung und Schiffahrt

Treibholz am Bodensee: https://www.igkb.org/fileadmin/user_upload/dokumente/seespiegel/53485_Seespiegel_14.pdf

Rhein-Hochwässer (HQ 100) https://www.bodensee-hochwasser.info/pdf/Extrem-HW-Bodensee-Internet.pdf

Klima-, 14C- und Seespiegelschwankungen am Bodensee

Magny 1993, M.: → Solar influences on Holocene climatic changes illustrated by correlations between past lake-level fluctuations and the atmospheric 14C record. Quaternary Research, 40 (1993), pp. 1-9. (Korrelation von 14C-Gehalt der Atmosphäre mit Seespiegelhöhen)

Magny 2004, M.: → Holocene climatic variability as reflected by mid-European lake-level fluctuations, and its probable impact on prehistoric human settlements. Quaternary International, 113 (2004), pp. 65-79. → Zweite Quelle. In "Duscussion" (p. 74) werden Seespiegel-Hochstände für bestimmte Jahrhunderte aufgelistet. In den Conclusions (p. 77) prognostiziert der Autor, dass "the 14C-record would support the hypothesis by Damon et al. (1989) of a higher-than-average solar activity during the next few centuries."

Magny 2006, M.; Leuzinger, U.; Bortenschlager, S.; Haas, J.N.: → Tripartite climate reversal in Central Europe 5600–5300 years ago. (Klimaschwankungen, 14C-Gehalt der Atmosphäre, Seespiegelschwankungen am Bodensee, Bohrkerne in Arbon Bleiche 3 …); Quaternary Research 65(1) 2006:3-19

Bodenseeabfluss, 10. Bericht (1924)

S. 44: 6) Hof bei Stein a. Rhein. Nahezu mitten im Rheinstrom etwas unterhalb Stein am Rhein liegt die Untiefe im »Hof«, wo 1883 die Reste des einzigen zum Gebiete des Kantons Schaffhausen gehörenden Pfahlbaues entdeckt wurden. Ausser zahlreichen Pfählen sieht man aus dem Untergrund auch Schwellen hervorragen, welche zur Sicherung der Anlage gegen die Strömung gedient hatten. Diese kleine Ansiedelung ist ihrer Lage wegen bemerkenswerth. B. Schenk (der ausserdem noch einen neuen Pfahlbau bei Gundolzen am Zellersee, zwischen Hornstaad und Iznang, entdeckt hat) hat diese Station ausgebeutet, auf welcher der starken Strömung wegen nur bei sehr niedrigem Wasserstand gearbeitet werden kann; zur Seltenheit wird die Stelle einmal ganz trocken. Schwache Spuren einer Kulturschicht fanden sich nur in geschützten Lagen. Alle Fundgegenstände sind mit einer dicken Sinterkruste umgeben und desshalb sehr schwer zu erkennen. Das Suchen war daher eine zeitraubende Arbeit, nichtsdestoweniger hat Schenk eine beträchtliche Zahl von Fundstücken gewonnen, als da sind: Feuersteingeräthe, etwa 150 Steinbeile, darunter drei kleine weingelbe Nephrite und zahlreiche grosse Serpentine. Durchbohrte Steinbeile sind ziemlich selten. Merkwürdig ist ein zerbrochenes Beil aus Basalt, bei welchem noch deutlich die bearbeiteten Flächen erkannt werden konnten. Dieser Fund ist ein Unicum. Aus Serpentin besteht eine wirteiförmige durchbohrte Scheibe von zirka 7 cm Durchmesser und einer Dicke von zirka 4 cm, welche wie zwei ähnliche, wenig grössere Scheiben von Bobenhausen und vom Bielersee als Feldhacke gedient haben mag. (Schlagknopf nach Leiner siehe pag. 35.) Neben Horn- und Knochenwerkzeugen fanden sich auch Knochen von Bär, Schwein, Biber, Hirsch, Reh und Kuh. Die Scapula eines Hirsches mit einem Loch in der Mitte, dessen Rand auf einer Seite abgeschliffen ist, ist von allen Unebenheiten durch Schleifen befreit und derjenigen vom »Turgi« (Seite 43) im Museum Frauenfeld ähnlich. Von pflanzlichen Resten sind Flachs-Faden und -Gewebe, sowie Bast-Geflechte zu nennen. Von Töpferwaare ist ein im Besitz der Antiq. Gesellschaft in Zürich befindlicher urnenförmiger Topf von zirka 30 cm Höhe erwähnenswerth. Die Metallzeit ist durch ein Kupferbeil von Steinbeilform (von 7 cm Länge, 4 cm unterer und 3 cm oberer Breite), einen Bronzering und ein Bronzebeil vertreten.


Lage des Pfahlbaus bei Stein am Rhein: "Im Hof"

Wie in der Abbildung zu erkennen ist, ist der Rhein vor der Engstelle zweigeteilt (mit der Insel Werd und Pfahlbauten bei Eschenz) und nachher wird der Rhein bei den Pfahlbauten „Im Hof“ (siehe den Pfeil) sehr breit. Beide Pfahlbauten befinden sich heute unter der Oberfläche des Rheins und sie profitierten sicher nicht von günstigen landwirtschaftlichen Voraussetzungen im Umfeld. Die Berge zu beiden Seiten des Rheins steigen innert kurzer Entfernung um 150-200 m rasch an. Damit erhebt sich die Frage, warum sie dort siedelten. Der Orkopf bei Eschenz könnte die Aufgabe gehabt haben, Verklausungen des Bodenseeabflusses durch heranschwimmende Bäume (nach Stürmen) zu verhindern. Die Lage der Siedlung „Im Hof“ bietet sich als geeignete Stelle für die Sicherstellung einer entsprechenden Rückwärtserosion des Rheins an der Engstelle an. Jedenfalls wäre Stein am Rhein eine besonders geeignete Stelle, um unterhalb des Flussbettes des Rheins zu sondieren, ob die ursprünglich Moräne ungestört vorliegt.

Seespiegelhöhen des Bodensees zw. 392 m und 400 m ü.M.

Magny Michel zum Bodensee und Suter zum Bielersee (ToDo)

Regressionen und Transgressionen am Bielersee

Magny 2005, M. gibt bereits 1995 in → "Die Schweiz im Neolithikum" als Zeiträume der Seespiegelhochstände 4.100–3.800 v.Chr. sowie 3.600–3.200 v.Chr. an, was mit den von Peter Suter vorgelegten dendrochronologisch bestimmten Ergebnissen für den Bielersee (vgl. Besiedlungsphase um 3.400 v. Chr. in der nebenstehende Grafik) nicht zusammenpasst.

Magny 2004, Michel: → Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. In: Quaternary International Volume 113, Issue 1, 2004, Pages 65-79.
(16 x eigene Arbeiten zitiert; wurde 671 x von anderen zitiert.)

Müller: In Arbon-Bleiche 3 konnten viele Hinweise auf die Seespiegelentwicklung gewonnen werden (Haas u. Magny 2004, 43–49; Magny et al. 2006, 3–19). Da Untersee und Obersee miteinander kommunizierten, sind die Seespiegelbeobachtungen aus dem Raum Arbon mit jenen von Eschenz direkt vergleichbar. Es wurde dort festgestellt, dass die im Mittelholozän stattgefundenen Klimawechsel Seespiegelanstiege bewirkten. Dabei wird angenommen, dass damals das Klima erheblich feuchter und kühler wurde. Die damaligen Schwankungen lassen sich in zwei erste Seespiegelanstiege, die zwischen 3600 bis 3500 BC stattfanden, und einen dritten gliedern, der um 3375–3320 BC erfolgte. Mit dem Anstieg des Bodenseespiegels konnten die «Pfahlbauer» die seenahen Bereiche der Bucht von Arbon-Bleiche nicht mehr als Siedlungsplatz nutzen.

Magny 2004; Haas N.: Schichtgenese und Vegetationsgeschichte. In: S. Jacomet, U. Leuzinger und J. Schibler, Die jungsteinzeitliche Seeufersiedlung Arbon-Bleiche 3. Umwelt und Wirtschaft. Archäologie im Thurgau 12. Frauenfeld, 43–49.

Magny 2006, M.; Leuzinger, U., Bortenschlager, S. und Haas, J.N. Tripartite climate reversal in Central Europe 5600–5300 years ago. Quarternary Research 65, 3–19.

Die Arbeiten von Oskar Keller & Edgar Krayss (1970er - 2013)

Geograph und Glazialmorphologe Doz. Oskar Keller

Der Geograph und Glazialmorphologe Oskar Keller und der Bauingenieur Edgar Krayss befassen sich seit den 1970er-Jahren mit den Eiszeiten in der Schweiz und vor allem in der Nordost-Schweiz und im Bodenseeraum.

  • Keller 1991, 0skar & Krayss, Edgar: Buch:Geologie und Landschaftsgeschichte des voralpinen Appenzellerlandes. Das Land Appenzell 21/22. Herisau. 120 Seiten.
    • S. 73: Gliederung der würmzeitlichen Eisrandlagen im Bodenseeraum
    • Würm-Maximum (W/M) = Schaffhausen: W1 = Engi, W2 = Herblingen, W3 = Solenberg
    • Würm-Feuerthalen (W/F): W4 = Feuerthalen; W5 = Langwiesen
    • Würm-Stein am Rhein (W/S): W6 = Staffel, W7 = Etzwilen, W8 = Stein am Rhein
    • Würm-Konstanz (W/K): W9 = Reichenau, W10 = Konstanz

Auszug zu: Einzelne Gletscherstände im Rheintal/Untersee (Keller 1999: S. 65)

Maximalstand und erste Rückschmelzphase

Eisstände Rheintal-Untersee nach Oskar Keller

Im Maximalstand W1 drängte sich die Eisfront des Vorlandgletschers so eng an die Kalkfelsen des Randen, dass sich für Ablagerungen kaum Platz bot. Bei Schaffhausen wird der interne Stand W2 durch die Schotterterrasse der Breiti repräsentiert, W3 durch diejenige des Stokarbergs.

Dem Stand W4 wird als Typuslokalität die Munotterrasse zugeordnet. Der zugehörige Wallmoränenkranz streicht von Feuerthalen über Buchthalen zum Rauhenberg und von dort wieder westwärts nach Thayngen. Beim Rückschmelzen zum Stand W6 wurde das Becken von Diessenhofen etappenweise eisfrei. Am Riegel von Langwiesen staute sich ein See auf, in den die Deltaschotter von Ebnet bei Willisdorf geschüttet wurden.

Im Stand W6 lag das Gletschertor der Rheintalzunge bei Rheinklingen. Südlich des Rodenbergs stirnten die Seitenzunge von Etzwilen und die Stammheimer Zunge des Thurtalgletschers gegen einen gemeinsamen Sander. Der Hauptstand W7 des Stein am Rhein-Stadiums Hess die eindrückliche Endmoränenlandschaft zwischen Etzwilen und Hemishofen entstehen. Über Kaltenbach steigen die Randmoränen nach Klingenzell auf; am Gegenhang sind sie hoch über Oehningen zu finden.

Zweite Rückschmelzphase

Nach der inneren Randlage W8 bei der Altstadt von Stein am Rhein setzte auch dort, analog zum Thurtal, die zweite Rückschmelzphase mit der Bildung eines großen Zungenbecken- oder Moränenstausees, des Untersees, ein. Beim Rückzug der Eisfront kam es erst auf der Höhe der Insel Reichenau wieder zu einem bedeutenden Zwischenhalt (W9). Zu dieser Randlage fallen die Seitenmoränen ab, die sich am Hang von Fruthwilen staffeln.

Der Endmoränenbogen von Konstanz markiert den Hauptstand W10 des Konstanz-Stadiums, von Schmidle (1914) als «Konstanzer Phase des Würmgletschers» eingeführt. Die Eisfront des Bodenseegletschers stirnte hier sowohl gegen den Untersee, als auch bei der Insel Mainau gegen den Überlingersee. Über die Stromrinne von Petershausen im Nordteil von Konstanz standen die beiden Gewässer miteinander in Verbindung.


Maximale Ausdehnung des Birrfeld-Gletschers
  • Keller 2010, Oskar: Landschafts-, Klima- und Vegetationsgeschichte. In: S. Benguerel et al.: → Archäologie im Thurgau 16. 2010, S. 43–65. [enthält auch: Leuzinger, Urs: → Jungsteinzeit S. 84 – 105; und alle Zeitperioden bis heute.]
  • Keller 2013, Oskar: Buch: Alpen – Rhein – Bodensee: Eine Landschaftsgeschichte. Appenzeller Verlag, 180 Seiten. (78 CHF)

Die Arbeiten von Erich Müller (1979, 2011)

Ur-Untersee (S. 64)

Der damalige Ur-Untersee reichte von Etzwilen/Hemishofen zumindest bis zum Konstanzer Stand. Die Wasserspiegelhöhe kann zwischen 412 und 415 m über Meer eingegabelt werden, was sehr gut mit der Höhenlage von Verlandungssedimenten im Raum von Stein am Rhein übereinstimmt. Der Ur-Untersee hatte eine wesentlich grössere Ausdehnung als heute. So reichte er bis nach Worblingen zum dortigen Moränenwall und nach Überlingen am Ried sowie nach Böhringen.

3.5.2. Entwässerungsverhältnisse während des Konstanzer Standes (S. 68)

Von der Annahme ausgehend, dass zu dieser Zeit der aufstauende Moränenriegel bei Hemishofen noch intakt war und somit der Seespiegel immer noch auf zirka 410 bis 415 m über Meer lag, bestand bei Kreuzlingen eine im See endende Eisfront.

4.1. Absenkung der Seespiegel (S. 70)

Im Bereich der Stauriegel fanden vorerst nur geringe Erosionen statt. Daher wurden die Seen primär nur langsam, aber sukzessive abgesenkt. Dabei wurden die Abflussmengen und somit auch die Erosionswirkungen stetig erhöht. Dies setzte sich solange fort, bis plötzlich die Riegel schlagartig «zusammenbrachen» und die Seen teilweise oder ganz ausliefen. [„Rückwärts-Erosion“?] Während der Hüttwilersee nur um 7 m und der Untersee um 16 m abgesenkt wurden, verlandeten die übrigen Seen ganz.


  • Müller 2011, Erich R.: Kap. 3.2 Geologie; Abschn. 3.2.5: Seespiegelstände des Bodensees. In: Benguerel 2011, Simone; Leuzinger, Urs; Müller, Erich et al.: → Tasgetium | Das römische Eschenz. Archäologie im Thurgau 17; Veröffentlichung des Amts für Archäologie des Kantons Thurgau. Frauenfeld 2011; 278 Seiten; Seiten 22-23.

Holozän – nacheiszeitliche Landschaftsentwicklung (vom AATG-Geologen Erich R. Müller: S. 22–23)

Natürliche Regulierungen des Seespiegels

Grundsätzlich ist festzuhalten, dass zwischen Eschenz und Öhningen bzw. dem Äschezerhorn und Stiegen (Öhningen) die Schlüsselstelle zu den Pegelständen des Bodensees liegt. Denn hier wird der nacheiszeitliche Bodensee gestaut. Als maßgebende «Steuerelemente» wirkt das dynamische Zusammenspiel der drei Bachschuttkegel des Dorfbachs und des Auerbachs sowie des Nodbachs (Öhningen) in Kombination mit den Erosionsprozessen des hier austretenden Hochrheins.

Aus den Abflussdaten des Bodensees von 1800 bis 2003 gibt es für den Abfluss des Rhein bzgl. der Pegelstände von Konstanz folgende Beziehung (Ostendorp et al. 2007):

Q [m3/s] = 0,00489·x2 - 0,968·x + 94,3; bei r = 0,996
wobei: x = Pegelstand [in cm] in Konstanz (391,89 [m+NN], bzw. 392,16 m ü. M.)

Damit ergibt bei einem Konstanzer Seepegel von 393 m ein Abfluss unter 100 m³/s und bei einem Pegelstand von 397 ein Rheinabfluss von 850 m³/s. [Anm.: MQ = 369 m³/s; HQ100 = 3.100 m³/s]

Verlauf der Seespiegelstände

Verlauf der Bodenseepegel im Holozän

Für das ganze Holozän betrachtet, traten in dieser Zeitepoche Seespiegel zwischen 392,50 bis 400 m ü. M. auf (Abb. 10). Vorerst befand sich der Seespiegel zur Zeit der Pleistozän-/Holozän-Grenze auf Kote 403±2 m. Dabei wurde der Untersee noch im Bereich des Moränenriegels Stein am Rhein-Burg (W8) gestaut. Anschließend wurde dieser durch den Rheinlauf erodiert, was eine Absenkung der Auslaufhöhe, und damit direkt verbunden, des Bodensee-/Unterseespiegels bewirkte. In der zeitlichen Folge wuchsen die Bachschuttkegel des Eschenzer Dorfbachs, des Auerbachs und des Nodbachs an. Dabei wurde der See nicht mehr am Moränenriegel aufgestaut, sondern an den «vereinigten» Bachschuttkegeln. In späterer Zeit mit geringerer Wasserführung des Rheins vermochten diese Bachschuttkegel den See wieder höher zu stauen. Zu Zeiten mit hohen Abflüssen finden verstärkte Erosionen an den stauenden Bachschuttkegeln statt, was folglich zum Absenken der Staukoten und daher zu niedrigeren Seespiegeln führt.

Auf Koten 403 und 398 m finden sich am Zeller See Strandterrassen. Diese entsprechen frühholozänen Seespiegelständen. Dabei stellt jene unterhalb der 400 m-Höhenlinie eine meist nur 2 m hohe Erosionsstufe dar. Der 398 m-Stand ist zeitlich mit dem Atlantikum (um 7000±1000 Jahre BP) zu korrelieren. Dies stimmt mit dem prähistorischen Befund überein, da mesolithische Funde nur landwärts von oberhalb der 398 m-Höhenlinie bekannt sind. In den Zeitabschnitten von 6 200 bis 5 900 BP sowie um 5300 BP fanden beträchtliche Wechsel der Seespiegelhöhen statt.

Jungsteinzeitliche Siedlungsreste finden sich zwischen den Höhenkoten 393 und 396 m, bronzezeitliche dagegen bei 392 bis 394 m. Während des Subboreals (4500 bis 2600 BP) lag dann der Seespiegel ca. 2–3 m tiefer als heute, das heißt etwa bei 392 bis 393 m ü. M.

Zu den Zusammenhängen von Seespiegelschwankungen mit den Bachdelta-Bildungen im Raum Eschenz–Öhningen fehlen bis heute Beschreibungen. So bleiben die Fragen offen, inwieweit die oben genannten Kriterien auch für das Verstärken bzw. Abnehmen der Deltabildungen zutreffen.

Bundesamt für Landestopografie im Kanton Thurgau (2008)

  • Bundesamt für Landestopografie (2008): → Geologischer Atlas der Schweiz (Blatt 1033/1034 Steckborn-Kreuzlingen). Erläuterungen 112. Verfasst von Zaugg, A.; Geyer, M.; Rahn, M.; Wessels, M.; Schlichtherle, H.; Hasenfratz, A. & Burkhalter, R. (S. 74–76)
  • Billamboz 1997, Andre; Dieckmann, B.; Ellminger, F.; Schlichtherle, H.; Vogt, R.: Prehistoric settlement and lake level changes of Lake Constance. In: 7th Intern. Symp. on Palaeolimnology.Terra nostra 1997/8:17– 20. (€ 16,50)

Seespiegelschwankungen seit der letzten Eiszeit (392-400 m ü.M.) (S. 74–75)

"Früh (1906) gab aufgrund von Delta- und Übergussschichten im Bachschuttkegel von Steckborn (Gebiet Weier) einen maximalen Unterseespiegel von 412 m ü.M. an. Dieser Seespiegel geht vermutlich auf einen spätglazialen, nur kurze Zeit beständigen Eisrandstausee zurück. Schmidle (1942) erwähnte einen maximalen, spät-/postglazialen Unterseestand von 413 m ü.M. und gab aufgrund von Terrassenbildungen, Geländekanten und Strandwällen abgestufte Seestände von 413, 408, 403 und 398 m ü.M. an. Blum et al. (1995) konnten eine Laufrichtungsänderung der Radolfzeller Aach in Rielasingen auf ca. 11 ka BP datieren. Davor floss die Aach in einer ehemaligen Schmelzwasserrinne über Ramsen direkt dem Rhein westlich von Hemishofen zu. Durch Extrapolation des Rinnengefälles der Aach (aus Blum et al. 1995) von Rielasingen über Ramsen nach Hemishofen resultiert ein Vorflutniveau (= Seespiegel im Untersee in der Zeit vor 11 ka BP) um 405 m ü.M. Dieser Seespiegel entspricht dem Seestand vor ca. 12 ka BP im Allerød-Interstadial (Torfmoore Nonnenhorn; vgl. Zusammenstellung der Stände im Bodensee [Obersee] in Zaugg et al. 2008). Der Seespiegel im Untersee war somit im ausgehenden Spätglazial noch maßgeblich durch das Niveau der Rheinsohle im Bereich der Endmoränen im Staffelwald westlich von Stein am Rhein beeinflusst (Staffelwald = äusserer Stand W 6 des Stein-am-Rhein-Komplexes, Keller & Krayss 2005a). Die Seehöhe von 405 m ü.M. entspricht zudem der topographisch höchsten Verbreitung der den Beckenton überlagernden See- und Verlandungssedimente im Raum Kreuzlingen.

Ein auch geologisch interessanter Aspekt ist die Höhenlage der vorgeschichtlichen Siedlungszeugnisse bezogen auf das heutige Niveau des Konstanzer Normalpegels (395 m ü.NN). Während spät-altsteinzeitliche Reste bis etwa 406 m ü.M. nachgewiesen worden sind, finden sich mittelsteinzeitliche Siedlungsreste bei 398–400 m ü.M. (Reinerth 1930), jungsteinzeitliche Stationen bei 393–396 m ü.M. und bronzezeitliche Reste bei 392–394 m ü.M. (Billamboz et al. 1997).

Die tiefe Lage von Fundschichten und Pfahlfeldern im Flachwasser bei 392,5 bis 395 m ü.M. einerseits, und der Nachweis einer jungsteinzeitliche Funde führenden, 398–400 m ü.M. verlaufenden Uferlinie bei Hornstaad anderseits, die mit Torf und kulturführenden Kolluvium überdeckt wurde, weist auf einen beträchtlichen Wechsel des Bodenseewasserspiegels um 4200–3900 v.Chr. und nochmals um ca. 3300 v.Chr. hin. Die Ergebnisse verschiedener Arbeitsgruppen (Rösch & Ostendorp 1988, Niessen & Sturm 1990, Ostendorp 1990, Dieckmann & Vogt 1994, Billamboz et al. 1997) deuten übereinstimmend auf Seespiegelschwankungen von bis zu 8 m (400–392 m ü.M.) im Holozän hin. Eine wissenschaftlich eindeutige und befriedigende Erklärung dieses für einen Binnensee beachtlichen Phänomens steht noch aus. Jüngste Untersuchungen auf Schweizer Seite deuten auf ähnliche, wenn auch metermässig nicht so bedeutende Seespiegelschwankungen der kleinen Seen auf dem Thurgauer Seerücken hin (Nussbaumer See, Steinegger Weiher, Hasesee; vgl. Rösch 1983, 1985). Eine Klärung erhofft man sich unter anderem von detaillierter Dendrochronologie, von Untersuchungen zur Verengung des Ausflusses durch die Deltaschüttungen beim Äschezerhorn (Eschenzer Horn) und zur Karbonatproduktion im Ausfluss des Untersees (natürliche Schwellenbildung?) sowie von der Erklärung möglicher Auswirkungen von Rutschungen in den Rhein zwischen Stein am Rhein und Schaffhausen."

Wechselnde Seepegelstände des Bodensees (in: Der Orkopf, 2020)

von Richard Vogt, Landesamt für Denkmalpflege Stuttgart in:

Bodensee-Ausrinn mit Schwemmfächern kleinerer Bäche

"Dem Bereich Öhningen/Eschenz bzw. Eschenzer Horn und Stiegen am Ausfluss des Untersees kommt eine zentrale Rolle für die Pegelstände des Bodensees zu. Erich Müller sieht hier das Zusammenspiel von drei Bachschuttkegeln als stauende Steuerelemente und Einschneidungen durch den Hochrheinausfluss als massgeblich an (Abb. 10).35 Dabei kommt neben klimatischen Faktoren auch der Witterung mit Starkregenereignissen eine entscheidende Bedeutung zu, welche die Entwicklung der Bachschuttkegel nachhaltig zu beeinflussen vermag. Während hohe Seepegelstände mit erhöhten Jahresniederschlägen, abnehmenden Sommertemperaturen und verkürzten Vegetationszeiten in Verbindung zu bringen sind, entstehen tiefe Pegelstände bei abnehmenden Jahresniederschlägen, zunehmenden Sommertemperaturen sowie verlängerter Vegetationszeit.36 Dieser Zusammenhang ist aktuell nach den unterdurchschnittlichen Niederschlägen des Jahres 2018 und dem daraus resultierenden niedrigen Seepegel offenkundig. Zugleich rufen hohe Abflussraten an Staukörpern wie den Schuttkegeln verstärkte Erosionen hervor, die in der Folgezeit zu sinkenden Seepegeln führen. Konkretere Untersuchungen zu genannten Wirkungsgeflechten existieren bislang jedoch nicht.

Verlauf der Bodenseepegel im Holozän: Grafik: AAThurgau, Erich Müller und Matthias Schnyder.

Erich Müller geht davon aus, dass während des Holozäns Wechsel im Bodenseepegel zwischen 392,5 und bis 400 m ü. M. aufgetreten sind.37 Er leitet dies aus den Höhenlagen frühholozäner Strandterrassen auf Niveaus von 403 bzw. 398 m ü.M. sowie der Lage jungsteinzeitlicher und bronzezeitlicher Siedlungsreste ab. Seine Überblicksdarstellung ist in Abbildung 11 wiedergegeben. Hierzu ist allerdings anzumerken, dass die genauere Höhenlage der Seepegel aus mehreren Gründen nur äusserst schwer zu fassen ist. So lässt sich aus überlieferten Seeablagerungen gewöhnlich nur der minimale, für deren Entstehung notwendige Wasserstand ablesen, obwohl der Pegel natürlich deutlich höher gelegen haben kann. Als Beispiel können hier Seekreideablagerungen dienen, die sich sowohl im seichten Flachwasser als auch bei einer mehrere Meter mächtigen Wasserüberdeckung ablagern können. Ausserdem kann für Siedlungsschichten im heutigen Flachwasserbereich nicht automatisch auf tieferliegende Seepegel (Trockenbodenbedingungen) zu damaliger Zeit geschlossen werden, denn bei Anzeichen für eine abgehobene Bauweise sind durchaus deutlich höhere Pegelniveaus möglich. Ausserdem ist zu berücksichtigen, dass Sedimentschollen mit den darin enthaltenen Kulturschichtstraten v.a. im Haldenbereich in tiefere Niveaus als in prähistorischer Zeit abgeglitten sein können. Seetiefstände sind wiederum deshalb schwer zu fassen, da die dabei abgelagerten Sedimente bei Transgressionen überspült und zumindest teilweise wieder aufgearbeitet wurden. Um also eine durchgehende Seepegelchronologie vorlegen zu können, bedarf es eine Fülle weiterer Einzelbeobachtungen."

Fußnoten 35, 36, 37: Müller, Erich In: Benguerel et al. 2011: Tasgetivm I Das römische Eschenz, S. 22.

Seepegel zur Zeit der Steinschüttung der "Hügeli" im Bodensee (2021)

Seepegel zur Zeit der Steinschüttung (S. 108; "ERM" = Erich Müller): "Eine der zentralen Fragen ist, ob die Hügel an Land, im Flachwasser oder sogar unter Wasser aufgeschüttet wurden. Die Hügelbasen liegen heute zwischen 389.50 und 392.00 m ü.M., die Kuppen variieren zwischen 390.8 und 392.7 m ü.M. Somit befinden sich die Hügelscheitel heutzutage ganzjährig unter Wasser; bei winterlichen Niedrigwassertiefstständen von 395 m ü. M. um die 3 m 5. ( 5 Der extreme Tiefstand der Messperiode 1930–2019 wurde mit 394.5 m ü. M. am 13. Februar 2006 am Pegel Romanshorn gemessen. [Anm.: 1891 - 394,25 m ü.M.]).

ERM: Geologisches Profil durch Rhein bei Hemishofer Brücken
Geolog. Bericht #2007 Geotechn. Büro Dr. von Moos AG 1969

Aus hydrologischen und geologischen Gründen kann der Bodenseepegel nicht beliebig absinken. Der Seepegel war aber klimabedingt phasenweise deutlich tiefer als heute (Vogt 2020 [Wechselnde Seepegelstände des Bodensees. In: Der Orkopf] ). Die höchstmögliche, aber wohl kaum tatsächlich erreichte Untergrenze eines prähistorischen Wasserspiegels lässt sich anhand der Profile bei Eschenz und Hemishofen berechnen (Müller 2011, S. 22: [Seespiegelstände des Bodensees. In: Benguerel 2011: Tasgetium | Das römische Eschenz.] ). ... Hauptregulatoren der Seepegelschwankungen sind somit die Bachschüttungen bzw. Erosionsvorgänge bei Eschenz/Öhningen (D) und im Konstanzer Seerhein. Eine für den minimalen Obersee-Pegel relevante Stelle liegt allerdings bei den Rheinbrücken von Hemishofen. Dort gibt es vier Bohrungen, die belegen, dass die Basis der Abflussrinne – Oberkante der anstehenden Moräne – bei höher/gleich 390 m ü. M. liegt (Geotechnisches Büro Dr. A. von Moos AG, 1969) (vgl. die Abb.). Somit kann man modellhaft mit einem tiefstmöglichen Wasserspiegel um 392.5 m ü. M. bei einer abfliessenden Wasserhöhe von maximal 2.5 m ausgehen. Auch wenn das Bohrraster bei Hemishofen etwas weitmaschig erscheint, ist doch offensichtlich, dass der Untersee und erst recht der Obersee wohl nie unter die Kote 393 m ü. M. abgesunken sein können. Dies ist auch mit den absoluten Höhen der Kulturschicht von Arbon-Bleiche 3 bei 393.9 m ü. M. um 3380 v. Chr. (Leuzinger 2000, 12 [Die jungsteinzeitliche Seeufersiedlung Arbon-Bleiche 3. Befunde. Archäologie im Thurgau 9.]; Magny, M.; Leuzinger, Urs et al. 2006 [Tripartite climate reversal in Central Europe 5600–5300 years ago.]) und den Befunden im Umfeld des Orkopfs bei Eschenz mit 393.5 m ü. M. in der Frühbronzezeit (Benguerel et al. 2020, 100–106) vereinbar. Bemerkenswert sind in diesem Zusammenhang auch die sehr tief liegenden Kulturschichtreste der beiden spätbronzezeitlichen Seeufersiedlungen Unteruhldingen (D) Stollenwiesen und Hagnau (D) Burg auf Höhenkoten um 392 m ü. M. (Schöbel 1996, 76–80). Bei den letztgenannten beiden Fundstellen gilt es allenfalls Sedimentrutschungen sowie eine abgehobene Bauweise der Häuser zu berücksichtigen."

"Die hypothetisch mögliche minimale Pegelhöhe des Bodensees um 393 m ü. M. zur Bauzeit der Steinstrukturen hätte zur Folge, dass die Hügel damals im Winterhalbjahr in mindestens 1.5–2 m Wassertiefe aufgeschüttet worden sein müssen. Damit die künstlichen Inseln bei einer angenommenen Höhe der Steinpackung von 0.8 bis 1.5 m Mächtigkeit aus dem Wasser ragen würden, fehlen in dieser Berechnung nach wie vor mehrere Dezimeter. Ob man diesen Höhenunterschied mit Sedimentsetzungen, Verlagerung der Steinpackung oder Mikrotektonik erklären kann, ist derweil offen. Ebenso unbeantwortet bleibt zurzeit die Frage, ob eine Sichtbarkeit der «Hügeli» an der Oberfläche zumindest saisonal von ihren Erbauern tatsächlich beabsichtigt war."

Verwendete Literatur:

Leuzinger (2000), Urs: → Die jungsteinzeitliche Seeufersiedlung Arbon-Bleiche 3. Befunde. Archäologie im Thurgau 9. Frauenfeld. [Seite 15: Die archäologischen Fundschichten verlaufen auf Höhen zwischen 393,90 und 397,00 m ü.M. und aus Rezension: ... zieht der Autor zu Recht den Schluss, dass die Häuser an der Hangkante der Arboner Bucht zumindest seewärts vom Boden abgehoben errichtet wurden.]

Müller 2011, Erich: Kap. 3.2 Geologie; Abschn. 3.2.5: Seespiegelstände des Bodensees. In: S. Benguerel/H. Brem/B. Fatzer et al.: → Tasgetium I. Das römische Eschenz. Archäologie im Thurgau 17. Frauenfeld. S. 22 ff.

Vogt 2020, R.: Wechselnde Seepegelstände des Bodensees. In: S. Benguerel/H. Brem/R. Ebersbach et al.: → Der Orkopf. Eine Fundstelle auf der Landesgrenze. Archäologie im Thurgau 20. Siedlungsarchäologie im Alpenvorland XIV, 22–23. Frauenfeld.

Schöbel 1996, G.: → Die Spätbronzezeit am nordwestlichen Bodensee. Taucharchäologische Untersuchungen in Hagnau und Unteruhldingen 1982–1989. Forschungen und Berichte zur Vor- und Frühgeschichte in Baden-Württemberg 47. Stuttgart.

Magny 2006, Michel; Leuzinger, U.; Bortenschlager, S. et al.: → Tripartite climate reversal in Central Europe 5600–5300 years ago. Quaternary Research 65, 3–19.

[Anm.: C. Schindler war 1969 Mitinhaber des Geotechn. Büros von Dr. Moos AG; 1982 Prof. f. Ingenieurgeologie ETHZ]

Zürichsee - Limmat (1971) (ToDo)

Conrad Schindler: → Geologie von Zürich und ihre Beziehung zu Seespiegelschwankungen; Vierteljahrsschrift der Naturforschenden Ges. Zürich 1971:283–315.

S. 297: „… höchstwahrscheinlich die dubiose «Seekreide» den Sünden eines längst verstorbenen Bohrmeisters anzurechnen ist.“ UND: „Es konnte z. B. durch Rückwärtserosion in der Ausflussrinne leicht ein kritischer Punkt erreicht werden, in welchem die höchste Schwelle plötzlich um beispielsweise 2 m erniedrigt wurde.“ UND: "gesamte Limmatsohle besteht aus Moränenmaterial"

Traunsee (ToDo)

Trebsche 2023, Peter; Seidl da Fonseca, Helena; et al.: → A Fluctuating Environment: Micromorphological and Archaeobotanical Investigations of the Early Iron Age Lakeshore Settlement at Traunkirchen (Upper Austria). Environmental Archaeology, The Journal of Human Palaeoecology; 18.2.2023.